跳到主要內容

臺灣博碩士論文加值系統

(44.197.230.180) 您好!臺灣時間:2022/08/20 11:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王朝富
研究生(外文):Chai-Fu Wang
論文名稱:電透析鹹鴨蛋蛋白液酵素水解物之抗氧化能力的探討
論文名稱(外文):Studies on the Antioxidative Activity from Enzymatic Hydrolysates of Salted Duck''s Egg White by Electrodialysis Desalination
指導教授:黃健政黃健政引用關係
指導教授(外文):Jan-Jeng Huang
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系碩士班
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:129
中文關鍵詞:鹹鴨蛋蛋白電透析酵素水解物抗氧化能力亞麻油酸自氧化
外文關鍵詞:salted duck''s egg whiteelectrodialysis desalinationenzymatic hydrolysatesantioxidative activitylinoleic acid autoxidation
相關次數:
  • 被引用被引用:22
  • 點閱點閱:921
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以經電透析處理之鹹鴨蛋蛋白液或未電透析處理之鹹鴨蛋蛋白液為原料,添加0.5%(w/w)的蛋白質分解酵素(Papain W-40、Peptidase R、Proleather FG、Protease A、Protease N或 Prozyme 6),置於45℃反應槽中進行水解0至24小時,探討酵素種類與水解時間對鹹鴨蛋蛋白液水解物的蛋白質分子分布與產物之抗氧化能力的影響。由可溶性蛋白質含量、胜太含量、胺基態氮含量、蛋白質電泳、膠體層析及高效能液相層析(C4與C18管柱)的分析結果顯示,電透析處理組之Prozyme 6水解物有較高之胜太產率。水解產物分子量分佈以5,000 Da以下為主。進一步探討各水解物對亞麻油酸自氧化作用之抑制能力,結果顯示未電透析處理組經Protease N水解24小時、Prozyme 6水解12小時及Protease A水解12小時之水解物的IC50值分別為1.14、1.20及1.37 mg/ml,其抗氧化能力比電透析處理組經相同酵素與水解時間為佳。將水解物以膜過濾劃分並凍乾後,配製成濃度為5 mg/ml時,電透析處理組之Protease N水解物的分子量1 kDa以下區分物為最具抗氧化能力(p<0.05),其抑制率為76.97%。分析其胺基酸組成,其中以脯胺酸(Proline)及鹼性胺基酸群含量較多於未電透析處理組。另以Protease A及Protease N水解物之抗氧性較強的膜區分物再利用Superdex peptide column進行劃分後,可得到7個主要劃分物,其中F3分子量介於1,100-2,800 Da之間,F4分子量介於450-1,100 Da之間,F5分子量介於180-450 Da之間,F6分子量則介於70-180 Da之間。在0.1-2 mg/ml濃度時,Protease A及Protease N水解物之膜區分物具有較佳抑制亞麻油酸自氧化能力之分子量範圍,分別是在1,100-2,800 Da及450-1,100 Da之間。
In this study, the salted duck''s egg white was treated or untreated by electrodialysis desalination as materials which were hydrolyzed with the addition of 0.5% (w/w) proteases (Papain W-40、Peptidase R、Proleather FG、Protease A、Protease N or Prozyme 6) and then were hydrolyzed for 0 to 24 hours at 45℃ in a reactor. The effect of proteases and hydrolysis time on protein molecules'' pattern and the antioxidative activity of salted duck''s egg white hydrolysates were investigated. Analysis of soluble protein content, peptide content, N-amino nitrogen content, SDS-PAGE, gel filtration chromatography and HPLC (C4 column and C18 column), the results suggested that the highest value in peptide yield was obtained when salted duck''s egg white was treated by electrodialysis desalination and then was hydrolyzed by Prozyme 6. The molecular weight distributions of hydrolysates were all below 5,000 Da by gel filtration chromatography.
Further, we examined that all hydrolysates inhibited linoleic acid autoxidation. Results showed that the salted duck''s egg white hydrolysates which were untreated by electrodialysis desalination with Protease N for 24 hours, Prozyme 6 for 12 hours, and Protease A for 12 hours had a higher ability of linoleic acid autoxidation than that treated by electrodialysis desalination. The IC50 values of hydrolysates were 1.14, 1.20 and 1.37 mg/ml, respectively. The hydrolysates were further screened by different proe size membranes, and then were freezed. When the solid concentration was 5 mg/ml, the Protease N hydrolysates of pore size membrane fraction (molecular weight below 1 kDa) was untreated by electrodialysis desalination had a stronger antioxidative activity (p<0.05), and the inhibition effect was 76.97%. However, this membrane fraction had higher contents of Proline and basic amino acids than those were untreated by electrodialysis desalination.
In addition, the pore size membrane fractions which had a higher antioxidative activity from Protease A and Proteas N were subjected to a Superdex peptide column gel filtration chromatography, and seven major fractions were obtained. Among of the fractions, the molecular weight of F3 was 1,100-2,800 Da, the molecular weight of F4 was 450-1,100 Da, the molecular weight of F5 was 180-450 Da and the molecular weight of F6 was 70-180 Da. The inhibition of linoleic acid autoxidation for all gel filtration fractions of the Protease A and Protease N hydrolysates from pore size membrane fractions were indicated that peptides with the molecular weight of 1,400-2,800 Da and 450-1,100 Da had a higher ability of the inhibition of linoleic acid autoxidation than others.
目錄.............................................I
表目錄......................................... VII
圖目錄........................................ VIII
中文摘要........................................ XI
英文摘要...................................... XIII
第一章 前言.................................... 1
第二章 文獻回顧................................ 4
一、蛋白的理化質................................ 4
(一)卵白蛋白.................................. 4
(二)伴白蛋白.................................. 7
(三)卵類黏蛋白................................ 7
(四)卵球蛋白.................................. 7
(五)卵黏蛋白.................................. 8
(六)溶菌每.................................... 8
二、鹹鴨蛋...................................... 9
(一)鹹鴨蛋(鹽漬殼蛋)之製法.................. 9
1. 紅土塗佈法................................... 9
2. 浸漬法....................................... 9
(二)鹽漬中蛋白與蛋黃的變化................... 10
(三)鹹鴨蛋蛋白液之應用....................... 10
三、電透析分離技術............................. 12
(一)原理..................................... 12
(二)薄膜的特性............................... 12
(三)應用..................................... 14
四、蛋白質分解酵素的特性....................... 14
(一)絲胺酸型蛋白質分解酵素................... 15
1. 胰凝乳蛋白每與胰蛋白每...................... 15
2. 麴菌屬之蛋白每.............................. 16
(二)硫醇型蛋白質分解酵素..................... 16
1. 木瓜蛋白分解每.............................. 17
2. 鳳梨蛋白分解每.............................. 17
(三)金屬型蛋白質分解酵素..................... 18
(四)酸性蛋白質分解酵素....................... 18
五、油脂氧化與抗氧化劑......................... 18
(一)脂質氧化作用............................. 18
1. 自氧化作用.................................. 18
2. 光氧化作用.................................. 19
3. 熱氧化作用.................................. 19
4. 酵素性氧化作用.............................. 20
(二)脂質氧化對生理健康之影響................. 20
(三)防止食品氧化的方法與途徑................. 21
(四)抗氧化物質的作用機制..................... 22
1. 自由基終止劑................................ 22
2. 還原劑和氧的清除劑.......................... 23
3. 金屬螯合劑.................................. 23
4. 單重態氧抑制劑.............................. 23
六、蛋白質水解程度之影響因子................... 24
(一)水解方式................................. 24
(二)酵素的種類、來源與水解位置............... 24
(三)酵素與受質比例........................... 25
(四)溫度..................................... 25
(五)pH值..................................... 26
(六)食鹽濃度與抑制劑......................... 26
七、蛋白質水解物之應用......................... 27
(一)蛋白質水解物的抗氧化性................... 27
1. 動物性來源之蛋白質或胜太的抗氧化性.......... 27
(1)肌太之抗氧化性............................ 27
(2)卵白蛋白及其水解物之抗氧化性.............. 28
(3)牛乳蛋白及其水解物之抗氧化性.............. 29
(4)魚、蝦蛋白及其水解物之抗氧化性............ 29
2. 植物性來源之蛋白質或胜太的抗氧化性.......... 30
(1)大豆蛋白及其水解物之抗氧化性.............. 30
(2)蠶豆蛋白之抗氧化性........................ 31
3. 其它........................................ 32
(1)明膠之抗氧化性............................ 32
(2)鮪魚蒸煮液蛋白質水解物之抗氧化性.......... 32
(二)蛋白質水解物的其他功能性................. 32
1. 調味利用.................................... 32
2. 營養利用.................................... 33
3. 促進鈣磷吸收................................ 34
4. 類鴉片作用.................................. 34
5. 調整免疫作用................................ 35
6. 防止血栓形成................................ 35
7. 抗高血壓性.................................. 36
8. 促進雙歧桿菌生長............................ 37
9. 抗菌活性.................................... 37
10. 苦味性..................................... 38
第三章 材料與方法............................. 39
一、實驗流程................................... 39
二、實驗材料................................... 39
1. 鴨蛋........................................ 39
2. 鹹鴨蛋白液.................................. 39
3. 電透析脫鹽之鹹鴨蛋蛋白液.................... 39
4. 蛋白質分解酵素.............................. 39
5. 化學藥品.................................... 40
三、實驗方法................................... 44
1. 鹹鴨蛋蛋白液酵素水解........................ 44
2. 可溶性蛋白質含量的測定...................... 44
3. 胺基態氮含量的測定...........................44
4. 胜太含量的測定.............................. 45
5. SDS不連續聚丙烯醯胺膠體電泳................. 45
6. 膠體過濾層析................................ 46
7. 高效能液相層析.............................. 46
(1)C4管柱HPLC分析條件........................ 47
(2)C18管柱HPLC分析條件....................... 47
8. 鹹鴨蛋蛋白水解物於亞麻油酸乳化系統之抗氧化活性. 48
(1)0.02 M之亞麻油酸乳化物之製備.............. 48
(2)抗氧化活性之測定法........................ 48
9. IC50值的測定............................... 48
10. 水解物之膜過濾劃分與收集................... 49
11. 劃分收集物對亞麻油酸自氧化抑制能力之測定... 49
12. 表面硫氫基含量之測定....................... 49
13. 胺基酸組成與含量之測定..................... 50
14. 膜區分物之管柱析出物劃分與收集............. 50
15. 膜區分物之各劃分收集物抑制亞麻油酸自氧化能力的測定. 50
16. 統計分析................................... 51
第四章 結果與討論............................. 52
一、電透析脫鹽處理對鹹鴨蛋蛋白液酵素水解物之化學性質的影響. 52
(一)可溶性蛋白質含量......................... 52
(二)胜太含量................................. 54
(三)胺基態氮含量............................. 56
(四)SDS-PAGE電泳圖譜......................... 58
(五)水解物分子量分布圖譜..................... 61
(六)水解物之C4逆相管柱HPLC圖譜............... 66
(七)水解物之C18逆相管柱HPLC圖譜.............. 69
二、電透析脫鹽處理之鹹鴨蛋蛋白液酵素水解物對亞麻油酸自氧化作用 的抑制能力..................................... 73
(一)水解物之胜太濃度與抑制能力的關係......... 73
(二)水解物之IC 50值.......................... 82
三、電透析鹹鴨蛋蛋白液之Protease A、Protease N及Prozyme 6水解物經膜區分物對其抗氧化性的影響................... 86
(一)各膜區分物之產率......................... 86
(二)各膜區分物之胜太含量..................... 88
(三)各膜區分物之表面硫氫基含量............... 90
(四)各膜區分物抑制亞麻油酸自氧化的能力....... 90
(五)各膜區分之胺基酸組成及化學性質區分....... 95
(六)抗氧化活性強之膜區分物進一步再探討其分子量與抑制亞麻油酸自氧化作用的關係................................ 105
第五章 結論.................................. 109
第六章 參考文獻.............................. 110
【表目錄】
表一、雞蛋卵白中主要蛋白質之物理性質............ 5
表二、雞蛋蛋白中主要蛋白質之化學性質............ 6
表三、酵素種類與水解時間對電透析處理之鹹鴨蛋蛋白液水解物抑制亞麻油酸自氧化能力之IC50值的影響................... 83
表四、酵素種類與水解時間對電透析處理之鹹鴨蛋蛋白液水解物抑制亞麻油酸自氧化能力之IC50值的影響................... 84
表五、電透析鹹鴨蛋蛋白液以Protease A, Protease N或Prozyme 6水解之膜區分物的產率............................... 87
表六、電透析鹹鴨蛋蛋白液以Protease A, Protease N或Prozyme 6水解之膜區分物的胜太含量........................... 89
表七、電透析鹹鴨蛋蛋白液以Protease A, Protease N或Prozyme 6水解之膜區分物的表面硫氫基含量..................... 91
表八、電透析鹹鴨蛋蛋白液以Protease A, Protease N或Prozyme 6水解之膜區分物抑制亞麻油酸自氧化的能力............. 92
表九、電透析鹹鴨蛋蛋白液以Protease A, Protease N或Prozyme 6水解之膜區分物抑制亞麻油酸自氧化的能力............. 93
表十、電透析鹹鴨蛋蛋白液以Protease A水解之膜區分物的胺基酸組成............................................. 96
表十一、電透析鹹鴨蛋蛋白液以Protease N水解之膜區分物的胺基酸組成............................................. 97
表十二、電透析鹹鴨蛋蛋白液水以Prozyme 6水解之膜區分物的胺基酸組成............................................. 98
【圖目錄】
圖一、電透析裝置圖............................. 13
圖二、鹹鴨蛋蛋白液以不同酵素水解處理之實驗與分析流程. 41
圖三、鹹鴨蛋蛋白水解物抗氧化性之實驗與分析流程. 42
圖四、鹹鴨蛋蛋白水解物之膜區物經膠體過濾層析劃分後,抗氧化性之實驗與分析流程................................... 43
圖五、酵素種類與水解時間對電透析處理之鹹鴨蛋蛋白液水解物可溶性蛋白質含量的影響................................. 53
圖六、酵素種類與水解時間對電透析處理之鹹鴨蛋蛋白液水解物胜太含量的影響......................................... 55
圖七、酵素種類與水解時間對電透析鹹鴨蛋蛋白液水解物胺基態氮含量的影響........................................... 57
圖八、電透析處理之鹹鴨蛋蛋白液以Papain W-40、PeptidaseR或Proleather FG水解不同時間之SDS聚丙醯胺膠體電泳圖譜. 59
圖九、電透析處理之鹹鴨蛋蛋白液以Protease A、ProteaseN或Prozyme6水解不同時間之SDS聚丙醯胺膠體電泳圖譜.......... 60
圖十、膠體過濾層析分析各標準蛋白質分子量與滯留時間之半對數圖..62
圖十一、電透析處理之鹹鴨蛋蛋白液以Papain W-40、Peptidase R或Proleather FG水解不同時間的胜太管柱HPLC圖譜.... 63
圖十二、電透析處理之鹹鴨蛋蛋白液以Protease A、Protease N或Prozyme 6水解不同時間的胜太管柱HPLC圖譜........ 64
圖十三、電透析鹹鴨蛋蛋白液以Papain W-40、Peptidase R或Proleather FG水解不同時間之C4逆相管柱HPLC圖譜.. 67
圖十四、電透析鹹鴨蛋蛋白液以Protease A、Protease N或Prozyme 6水解不同時間之C4逆相管柱HPLC圖譜................. 68
圖十五、電透析鹹鴨蛋蛋白液以Papain W-40、Peptidase R或Proleather FG水解不同時間之C18逆相管柱HPLC圖譜
圖十六、電透析鹹鴨蛋蛋白液以Protease A、Protease N或Prozyme 6水解不同時間之C18逆相管柱HPLC圖譜................ 71
圖十七、鹹鴨蛋蛋白液以Papain W-40水解之產物胜太濃度與抑制亞麻油酸自氧化能力之關係............................. 74
圖十八、鹹鴨蛋蛋白液以Peptidase R水解之產物胜太濃度與抑制亞麻油酸自氧化能力之關係............................. 75
圖十九、鹹鴨蛋蛋白液以Proleather FG水解之產物胜太濃度與抑制亞麻油酸自氧化能力之關係........................... 77
圖二十、鹹鴨蛋蛋白液以Protease A水解之產物胜太濃度與抑制亞麻油酸自氧化能力之關係............................... 78
圖二十一、鹹鴨蛋蛋白液以Protease N水解之產物胜太濃度與抑制亞麻油酸自氧化能力之關係............................. 80
圖二十二、鹹鴨蛋蛋白液以Prozyme 6水解之產物胜太濃度與抑制亞麻油酸自氧化能力之關係............................. 81
圖二十三、電透析鹹鴨蛋蛋白液之Protease A酵素水解24小時水解物之膜區分物中胺基酸性質的比較...................... 102
圖二十四、電透析鹹鴨蛋蛋白液之Protease N酵素水解18小時水解物之膜區分物中胺基酸性質的比較...................... 103
圖二十五、電透析鹹鴨蛋蛋白液之Prozyme 6酵素水解18小時水解物之膜區分物中胺基酸性質的比較...................... 104
圖二十六、電透析鹹鴨蛋蛋白液之Protease A 24小時水解物的分子量1-3 kDa膜區分物經膠體過濾層析劃分收集後,其劃分物抑制亞麻油酸自氧化的能力...................................... 107
圖二十七、電透析鹹鴨蛋蛋白液之Protease N 18小時水解物的分子量1 kDa以下膜區分物經膠體過濾層析劃分收集後,其劃分物抑制亞麻油酸自氧化的能力.................................... 108
(1) 下戶秀聰:蛋白質加水分解酵素 用  蛋白質 高度加水分解。食品 開發,31: 20-22 (1996)。
(2) 日本醬油研究所:  試驗法。醬協通訊社,日本(1985)。
(3) 白火城、張勝善、李雙林:鹹雞蛋製造之研究。中國畜牧學會會誌,11: 78-83 (1982)。
(4) 呂幸江、蔣丙煌:利用電透析法將百香果汁脫酸之研究。食品科學,18: 416-422 (1991)。
(5) 李忠正:利用不同除糖方法製造全蛋粉之研究。國立中興大學畜產研究所碩士論文,台中(1989)。
(6) 李英欽:溶菌蛋白抽取後之剩餘蛋白的利用:添加利用及蛋白水解物之試製。國立中興大學畜牧學研究所碩士論文,台中(1987)
(7) 李敏雄、蔡采芳、蘇南維、葉震浩、姚蕙芳:雞蛋白水解物之製備及其性質之研究。食品科學,26: 468-477 (1999)。
(8) 沈華山、張勝善、洪連欉:蛋白粉製造之研究,II。蛋白粉品質及應用實驗。中國畜牧學會會誌,19: 87-97 (1990)。
(9) 林秀年:酵素水解淘汰雞肉及其利用之研究。靜宜大學食品營養研究所碩士論文,台中(1993)。
(10) 林玫欣:鯖魚肉與內臟水解物之抗氧化性研究。國立台灣海洋大學食品科學系碩士論文,基隆(1999)。
(11) 林慶文、林松筠:製造東方式乾酪之研究-毛黴蛋白分解之性質。中國農業化學會誌,15: 49 (1977)。
(12) 林慶文、姜延年、蘇和平、陳小玲:鹹鴨蛋蛋白液之乳化性及其於法蘭克福香腸之應用。食品科學,23: 244-254(1996)。
(13) 林慶文:蛋之化學與利用。華香園出版社,台北(1983)。
(14) 洪文興:鹹鴨蛋蛋白溶菌每分離之研究. 國立中興大學畜產學研究所碩士論文,台中(1996)。。
(15) 涂茂園:逆滲透及電透析。石油季刊,30: 53-67 (1994)。
(16) 張文重:蛋白質分解酵素。國立編譯館,台北(1976)。
(17) 張勝善、黃森源、沈華山:蛋白飲料製造之研究。中國畜牧學會會誌, 14: 77-87 (1985)。
(18) 陳怡宏:生物活性胜太及其合成。食品工業月刊,31: 1-8 (1999).
(19) 陳怡宏:蛋白質酵素水解液之生產技術。食品工業,29: 34-40 (1997).
(20) 陳明造:蛋品加工理論與應用。藝軒圖書出版社,台北(1989)。
(21) 陳姿利:利用雞蛋白水解物生產血管收縮素轉化每抑制劑。國立台灣大學食品科技研究所碩士論文,台北(1999)。
(22) 陳美貞:鯖魚肉蛋白質水解物對血管升壓素轉換每之抑制及其降高血壓的效果。國立台灣海洋大學食品科學研究所碩士論文,基隆(1998)。
(23) 曾吉偉:酵素水解魚肉生產胜太及其抗氧化特性之研究。國立台灣海洋大學食品科學系碩士論文,基隆(2001)。
(24) 程竹青:蛋白質水解液苦味之探討。食品工業月刊,25: 32-39 (1996).
(25) 黃怡菁、楊勝欽:製造條件對於雞蛋卵白點心品質的影響。食品科學,20: 291-303 (1993)。
(26) 黃健政、蔡震壽、張瑞郎:乾燥方法對鹹鴨蛋蛋白粉性質及其功能特性之影響。食品科學,23: 819-829 (1996)。
(27) 黃健政、蔡震壽:加熱處理後雞、鴨蛋與鹹鴨蛋蛋白液化學性質與膠體質地特性的變化。嘉義大學學報,68: 35-54 (2000)。
(28) 黃健政:鹹鴨蛋蛋白的理化性質與應用。國立台灣海洋大學食品科學研究所博士論文,基隆(1999)。
(29) 楊勝欽、林郁芳:雞蛋卵白的加熱凝膠探討及卵白凍的研究開發。食品科學,17: 123-137 (1990)。
(30) 楊慶泉。分離鹹鴨蛋溶菌每方法之研究. 國立台灣大學食品科學研究所碩士論文,台中(1995)。
(31) 楊顯謨:糖蜜經電氣透析脫鹽後的醱酵性。食品工業,20: 32-35 (1988)。
(32) 葉震浩:雞蛋白之水解與應用之研究。國立台灣大學農業化學研究所碩士論文,台北(1999)。
(33) 劉冠英、楊勝欽:雞蛋卵白的酵素部分水解及其對蛋白起泡性之影響。食品科學,20: 51-58 (1993)。
(34) 劉茂宏、張勝善、沈華山、洪連欉、蕭興浦:蛋白溶菌酵素對貢丸之保存效果。中國畜牧學會會誌,23: 433-440 (1994)。
(35) 劉毓蕙:乳蛋白中的生物活性太。食品工業,31: 19-28 (1999)。
(36) 蔣丙煌、鍾美玉:由新鮮蛋黃製造鹹蛋黃可行性的探討。食品科學,13: 1-19 (1986)。
(37) 鄭名凡:蛋白質水解物的功能與應用。食品資訊,160: 49-54 (1999)。
(38) 鄭祝菁:雞蛋酵素水解物之研究。國立中興大學畜產研究所碩士論文,台中(1995)。
(39) 蕭錦良、周正俊:食鹽對Actinomucor taiwanensis各水解酵素活性及豆腐受質酵素水解之影響。食品科學,16: 210-217(1989)。
(40) 錢阜甯:魚肉蛋白之酵素水解。食品工業月刊,26: 27-35 (1994)。
(41) 霍超倫:氧化油脂對食品蛋白質品質影響之研究。國立中興大學食品科學研究所碩士論文,台中(1987)。
(42) 饒家麟、柯文慶:鮪魚蒸煮液蛋白質水解物之抗氧化特性。台灣農業化學與食品科學,39: 363-369 (2001)。
(43) Adler-Nissen, J.: Some fundamental aspects of food protein hydrolysis. In: Enzymatic Hydrolysis of Food Protein, pp. 20-21. Elesevier Science Publishing Co., Inc. New York, USA. (1986).
(44) Amarowicz, R. and Shahidi, F.: Antioxidant activity of peptide fractions of capelin protein hydrolysates. Food Chem., 58: 355-359 (1997).
(45) Ames, B. N., Shigenaga, M. K. and Hagen, T. M.: Oxidants, atoxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci., 90: 7915-7922 (1993).
(46) Andres, C. and Duxbury, D.: Antioxidants: past, present and future. Food Processing, 5: 100-104 (1990).
(47) Angelo, A. J.: Lipid oxidation in food. Crit. Rev. Food Sci. Nutr., 36: 175-224 (1996).
(48) Arihara, K., Nakashima, Y., Mukai, T., Ishikawa, S. and Itoh, M.: Peptide inhibitors for angiotensin I converting enzyme from enzymatic hydrolysates of porcine skeletal muscle proteins. Meat Sci., 57: 319-324 (2001).
(49) Aroma, O. J.: Nutrition and health aspects of free radicals and antioxidant. Food Chem. Toxic., 32: 671-683 (1994).
(50) Astawan, M., Wahyuni, M., Yasuhara, T., Yamada, K., Tadokoro, T. and Maekawa, A.: Effects of angiotensin I-converting enzyme inhibitory substances derived from Indonesian dried-salted fish on blood pressure of rats. Biosci. Biotech. Biochem., 59: 425-429 (1995).
(51) Azari, P. R. and Feeney, R. E.: Resistance of metal complexes of conalbumin and transferring to proteolysis and to thermal denaturation. J. Biol. Chem., 232: 293-302 (1958).
(52) Azari, P. R. and Feeney, R. E.: The resistances of conalbumin and its iron complex physical and chemical treatments. Arch. Biochem. Biophys., 92: 44-52 (1961).
(53) Azuma, N., Kaminogawa, S. and Yamauchi, K.: Properties of glycomacropeptide and para-κ-casein derived from human κ-casein and comparison of human and bovine κ-caseins as to susceptibility to chymosin and pepsin. Argric. Biol. Chem., 48: 2025-2031 (1984b).
(54) Azuma, N., Yamauchi, K., and Mitsuoka, T.: Bifidus growth promoting activity of a glycomacropeptide derived from human κ-casein. Agric. Biol. Chem., 48: 2159-2162 (1984a).
(55) Baker, C. M. A. and Manwell. C.: Molecular genetics of avian proteins. I. The egg white proteins of the domestic fowl. Br. Poultry Sci., 3: 161-174 (1962).
(56) Baldwin, E. A., Nisperso-Carriedo, M. O. and Baker, R. A.: Use of edible coating to preserve qualitu of lightly (and sightly) processed products. Cri. Rev. Food Sci. and Nutr., 35: 509-524 (1995).
(57) Bass, E. J. and Cayle, T.: Beer. In: Enzymes in Food Processing (Reed, G. ed.), pp. 455. Academic Press, New York, USA. (1975).
(58) Bawa, A. S., Orr, H. L. and Usborhe, W. R.: Effect of antemorterm papain injection on the tenderness of spent white Leghorn hens. J. Food Sci. Technol., 22: 254-257 (1985).
(59) Bawa, A. S., Orr, H. L. and Usborhe, W. R.: Enzymatic tenderization of spent white leghorn hens. Poultry Sci., 60: 744-749 (1981).
(60) Bazinet, L., Lamarche, F. and Lppersiel, D.: Bipolar-membrane electrodialysis: Applications of electrodialysis in the food industry. Trends in Food Sci. and Technol. 9: 107-113 (1998).
(61) Bellamy, W., Takase, M., Wakabayashi, H., Kawase, K. and Tomita, M.: Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J. Appl. Bact., 73: 472-479 (1992).
(62) Bernboldt, H. F.: Meat and other proteinaceous foods. In: Enzymes in Food Processing (Reed, G. ed.), pp. 473. Academic Press, New York, USA. (1975).
(63) Bishov, S. J. and Henick, A. S.: Antioxidant effect of protein hydrolysates in a freeze-dried model system. J. Food Sci., 37: 873-875 (1972).
(64) Bonilla, F., Mayen, M., Merida, J. and Medina, M.: Extraction of phenolic compounds from red grape marc for use as food lipid antioxidants. Food Chem., 66: 209-215 (1999).
(65) Branen, A. L.: Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. JAOCS., 52: 59-63 (1975).
(66) Byun, H. G. and Kim, S. K.: Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska Pollack (Theragra chalcogramma) skin. Process Biochem., 36: 1155-1162 (2001).
(67) Chan, W. K. M., Decker, E. A., Chow, C. K. and Boissonneault, G. A.: Effect of dietary carnosine on plasma and tissue antioxidant concentrations and on lipid oxidation in rat skeletal muscle. Lipids, 29: 461-466 (1994).
(68) Chan, W. K. M., Decker, E. A., Lee, J. B. and Butterfield, D. A.: EPR spin-trapping studies of the hydroxyl radical scavenging activity of carnosine and related dipeptides. J. Agric Food Chem., 42: 1407-1410 (1994).
(69) Chang, H. M., Yang, C. C. and Chang, Y. C.: Rapid separation of lysozyme from chicken egg white by reductants and thermal treatment. J. Agric. Food Chem., 48: 161-164 (2000).
(70) Chang, H. S. and Liu, M. H.: Preservative effect of egg white lysozyme on fish ball. J. Chinese Soc. Animal Sci., 23: 441-448 (1994).
(71) Chang, R. W. H. and Linn, F. M.: Stabilization of linoleic acid by arginine and lysine against oxidation. JAOCS., 41: 780 (1964).
(72) Cheftel, C., Aher, M., Wang, D. I. C. and Tannenbaun, S. R.: Enzyme solubilization of fish protein concentrate: Batch studies applicable to continuous enzyme recycling processes. J. Agric. Food Chem., 19: 155-161 (1971).
(73) Chen, H. M., Muramoto, K. and Yamauchi, F. and Nokihara, K.: Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J. Agric. Food Chem. 44: 2619-2622 (1996).
(74) Chen, H. M., Muramoto, K. and Yamauchi, F. and Nokihara, K.: Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J. Agric. Food Chem. 46: 49-53 (1998).
(75) Chen, H. M., Muramoto, K. and Yamauchi, F.: Structural analysis of antioxidative peptides from soybean β-conglycinin. J. Agric. Food Chem. 43: 574-578 (1995).
(76) Chen, J. R., Yang, S. C., Liu, Y. L., Suetsuna, K. and Shieh, M. J.: Peptides with angiotensin I converting enzyme inhibitory activity in pepsin-digests of soybean broth. Nutr. Sci. J., 22: 435-444 (1997).
(77) Chen, T. F., Kao, S. C., Lan, H. L. snd Chou, T. K.: Desalting and recovery of taste compounds from salted sardine and shrimp stickwaters by membrane. J. Taiwan Fish. Res., 2: 57-68 (1994).
(78) Chiang, W. D. Cordle, C. T. and Thomas R. L.: Casein hydrolysates produced using a formed-in-place membrane reactor. J. Food Sci., 60: 1349-1352 (1995).
(79) Chiang, W. D., Shih, C. J. and Chu, Y. H.: Functional properties of soy protein hydrolysate produced from a continuous membrane reactor system. Food Chem., 65: 189-194 (1999).
(80) Chung, K. H. and Lee, C. M.: Water binding and ingredient dispersion pattern effects on surimi gel texture. J. Food Sci., 56: 1263-1266 (1991).
(81) Church, F. C., Swaisgood, H. E., Porter, D. H. and Catignani, G. L.: Spectrophotometric assay using ο—phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci., 66: 1219-1227 (1983).
(82) Clark, J. R., Osuga, D. T. and Feeney, R. E.: Comparison of avian egg white conalbumins. J. Biol. Chem., 238: 3621-3631 (1963).
(83) Clemente, A. and Chambers, S. J.: Development and production of hypoallergenic protein hydrolysates for use in infant formulas. Food Allergy Intoler., 1: 175-190 (2000).
(84) Clemente, A.: Enzymatic protein hydrolysates in human nutrition. Trends Food Sci. Technol., 11: 254-262 (2000).
(85) Cunningham, F. E. and Lineweaver, H.: Stabilization of egg white proteins to pasteurizing temperature above 60℃. Food Technol., 19: 136-141 (1965).
(86) Cunningham, M. L., Peak, J. G. and Peak, M. J.: Singlestrand DNA breaks in rodent and human cells produced by superoxide anion or its reduction product. Mutat. Res., 184: 217-222 (1987).
(87) Damodaran, S.: Influence of protein coformation on its adaptability under chaotropic conditions. Int. J. Biol. Macromol., 11: 2-8 (1989).
(88) Darkwa, J., Mundoma, C. and Simoyl, R. H.: Antioxidant chemistry: reactivity and oxidation of dl-cysteine by some common oxidants. J. Chem. Soc. Faraday Trans., 94: 1971-1978 (1988).
(89) Decker, E. A., Chan, W. K. M., Livisay, S. A., Butterfield, L. D. A. and Faustman, C.: Interactions between carnosine and the different redox states of myoglobin. J. Food Sci., 60: 1201-1204 (1995).
(90) Decker, E. A., Crum, A. D. and Calvert, J. T.: Differences in the antioxidant mechanisms of carnosine in the presence of copper and iron. J. Agric. Food Chem., 40: 756-759 (1992).
(91) Decker, E. A., Livisay, S. A. and Zhou, S.: Mechanisms of endogenous skeletal muscle antioxidants: chemical and physical aspects. In: Antioxidants in Muscle Foods (Decker, E.A., Faustman, C. and Lopez-Bote, C. J. ed.), pp. 41-50. John Wiley&Sons, Inc. New York, USA. (2000).
(92) Decker, E. A.: Strategies for manipulating the prooxidative/antioxidative balance of foods to maximize oxidative stability. Trends in Food Sci. & Technol., 9: 241-248 (1998).
(93) Decker, E. and Faraji, H.: Inhibition of lipid oxidation by carnosine. JAOCS., 67: 650-652 (1990).
(94) Donnelly, J. L., Decker, E. A. and McClements, D. J.: Iron-catalyzed oxidation of menhaden oil as affected by emulsifiers. J. Food Sci., 63: 997-1000 (1998).
(95) Dziezak, J. D.: Preservatives: antioxidants. The ultimate answer to oxidation. Food Technol., 40: 94-102 (1986).
(96) Ehlers, M. R. and Riordan, J. F.: Angiotensin-Converting enzyme new concepts converting its biological role. Biochem., 28: 5311-5317 (1989).
(97) Eillison, R. T., Giehl, T. J. and Laforce, F. M.: Damage of the outer membrane of enteric Gram-negative bacteria by lactoferrin and transferrin. Infec. Immun., 56: 2774-2781 (1988).
(98) Ellman, G. L.: Tissue sulfhydryl groups. Arch. Biochem. Biophys., 82: 70-77 (1959).
(99) Fagan, J. M., Sleczke, B. G. and Sohar, I.: Quantitation of oxidative damage to tissue proteins. IJBCB., 31: 751-757 (1999).
(100) Fagbenro, O. and Jauncery, K.: Chemical and nutritional quality of raw, cooked and salted fish silage. Food Chem., 48: 331-335 (1993).
(101) Feeney, R. E., Abplanalp, H., Clary, J. J., Edwards, D. J. and Clark, J. R.: A genetically varying minor protein constituent of chicken egg white. J. Biol. Chem., 238: 1732-1736 (1963).
(102) Foegeding, E. A., Bowland, E. L. and Hardin, C. C.: Factors that determine the fracture properties and microstructure of globular protein gels. Food Hydrocolloids, 9: 237-249 (1995).
(103) Fox, P. F. and Mulvihill, D. M.: Developments in milk protein processing. Food Sci. Tech. Today, 7: 152-161 (1993).
(104) Frokjer, S.: Use of hydrolysates for protein supplementation. Food Technol., 48: 86-88 (1994).
(105) Fujimaki, M. H., Kato, H., Arai, S. and Yamashita, M.: Applications microbial proteases to soybean and other materials to improve acceptability, especially through the formation of plastein. J. Appl. Bacteoiol., 34: 119-125 (1971).
(106) Galyean, R. D. and Cotterill, O. J.: Chromatography and electrophoresis of native and spray-dried egg white. J. Food Sci., 43: 1345-1349 (1979).
(107) Gennadios, A., Hanna, M. A., Weller, C. L. and Fronong, G. W.: Mechanical and barrier properties of egg albumin films. J. Food Sci., 61: 585-589 (1996).
(108) Gilbert, A. B.: The egg: Its physical and chemical aspects. In: Physiology and Biochemistry of the Domesti Fowl (Ball, D. J. and Freeman, B. M. ed.), Vol. 3. Academic Press, Inc. New York, USA. (1971).
(109) Gildberg, A., Hermes, J. E. and Orejana, F. M.: Acceleration of autolysis during fish sauce fermentation by adding acid and reducing the salt content. J. Sci. Food Agric., 35: 1363-1369 (1984).
(110) Gildberg, A.: Enzymatic processing of marine raw materials. Process Biochem., 28: 1-15 (1993).
(111) Gordon, M. H. and Roeding-Penman, A.: Antioxidant activity of quercetin and myricetin in liposomes. Chem. Phys. Lipids., 97: 79-85 (1998).
(112) Gordon, M. H.: The mechanism of antioxidant action in vitro. In: Food Antioxidants (Hudson, B. J. F. ed.), pp. 1-18. Elsevier Applied Science, London and New York (1990).
(113) Gottschalk, A. and Lind, P. E.: Ocomucin, a substance for the enzyme of influence virus. I. Ovomucin as an inhibitor of haemagglutination by heated Lee virus. Br. J. Exp. Pathol., 30: 85-88 (1949).
(114) Grimble, G. K. and Silk, D. B. A.: Peptides in human nutrition. Nutr. Res. Rev., 2: 87-108 (1989).
(115) Grimble, G. K.: The significance of peptides in clinical nutrition. Annu. Rev. Nutr., 14: 419-447 (1994).
(116) Hagolle, N., Relkin, P., Dalgleish, D. G. and Launay, B.: Transition temperatures of heat-induced structural changes in ovalbumin solutions at acid and neutral pH. Food Hydrocolloids, 11: 311-317 (1997).
(117) Halliwell, B., Gutteridge, J. M. C. and Cross, C. E.: Free radicals and toxicology. In: Free Radicals in Biology and Medicine (Halliwell, B. and Gutteridge, J. M. C. ed.). pp. 299-365. Clarendon Press, Oxford (1989).
(118) Halliwell, B.: The role of oxygen radicals in human disease, with particular reference to the vascular system. Haemostasis, 23: 118 (1993).
(119) Hata, Y., Yamamoto, M., Ohni, M., Nakajima, M., Nakamura, Y. and Takano, T.: Placebo-controlled study of the effect of sour milk on blood-pressure in hypertensive subjects. Am. J. Clin. Nutr. 64: 767-771 (1996).
(120) Hatate, H.: Antioxidative activity of ovalbumin hydrolysates and their synergistic effect with α-tocopherol. Nippon Shokuhin Kogaku Kaishi, 43: 719-722 (1996).
(121) Hattori, M., Yamaji-Tsukamoto, K., Kumagai, H., Feng, Y. and Takahashi, K.: Antioxidative activity of soluble elastin peptides. J. Agric. Food Chem., 46: 2167-2170 (1998).
(122) Hegg, P. O. and Lofqvist, B.: The protective effect of small amount of anionic detergents on the thermal aggregation of crude ovalbumin. J. Food Sci., 39: 1231-1236 (1974).
(123) Hipkiss, A. R.: Carnosine, a protective, anti-ageing peptide? Int. J. Biochem. and Cell Biology, 30: 863-868 (1998).
(124) Hsieh, Y. L. and Regenstein, J. M.; Texture changes on heating spray-dried egg white. J. Food Sci., 54: 1206-1208 (1989).
(125) Huang, J. J., Tsai, J. S. and Sun Pan B.: Pickling time and electrodialysis affects functional properties of salted duck egg white. J. Food Biochem., 23: 607-618 (1999).
(126) Hyun, C. K. and Shin, H. K.: Utilization of bovine blood plasma proteins for the production of angioensin I converting enzyme inhibitory peptides. Proc. Biochem., 36: 65-71 (2000).
(127) Imida, K., Fukushima, S., Shivai, T., Ohtani, M., Nakanishi, K. and Ito, N.: Promoting activities of butylated hydroxyanisole and butylated hydroxytoluene on 2-stage urinary bladder carcinogenesis and inhibition of γ-glutamyl transpeptidase-positive foci development in the liver of rats. Carcinogenesis, 4: 885-889 (1983).
(128) Jacob, R. A.: Nutrition, Health and antioxidant. INFORM., 5: 1271-1275 (1994).
(129) Jeon, Y. J., Byun, H. G. and Kim, S. K.: Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes. Proc. Biochem., 35: 471-478 (1999).
(130) Johnson, L. N.: The structure and function of lysozyme. Sci. Prog. (Oxford) 54: 367-385 (1966).
(131) Jolles, P., Loucheux-Lefebvre, M. H. and Henschen, A.: Structural relatedness of κ-casein and fibrinogen γ-chain. J. Mol. Evol., 11: 271-277 (1978).
(132) Karel, M. and Simic, M. G. Autoxidation in food and biological system. Plenum Press, New York, USA. (1979).
(133) Karel, M., Tannenbaum, S. R., Wallace, D. H. and Maloney, H.: Autoxidation of methyl linoleate in freeze-dried model systems, III: effect of added amino acids. J. Fod Sci., 31: 892-896 (1966).
(134) Karpinska, M., Borowski, J. and Danowska-Oziewicz, M.: The use of natural antioxidants in ready-to-serve food. Food Chem., 72: 5-9 (2001).
(135) Kato, A., Ibrahim, H. R., Takagi, T. and Kobayashi, K.: Excellent gelation of egg white preheated in the dry state is due to the decreasing degree of aggregation. J. Agric. Food Chem., 38: 1868-1872 (1990c).
(136) Kato, A., Ibrahim, H. R., Watanabe, H., Honma, K. and Kobayashi, K.: Enthalpy of denaturation and surface functional properties of heated egg white proteins in the dry state. J. Food Sci., 55: 1280-1283 (1990a).
(137) Kato, A., Ibrahim, H. R., Watanabe, H., Honma, K. and Kobayashi, K.: Structural and gelling properties of dry-heating egg white proteins. J. Agric. Food Chem., 38: 32-37 (1990b).
(138) Kato, N., Sato, S., Yamanaka, A. and Yamada, H.: Silk protein, sericin inhibits lipid peroxidation and tyrosinase activity. Biosci. Biotechnol. Biochem., 62: 145-147 (1998).
(139) Kawashima, K., Itoh, H., Miyoshi, M. and Chibata, I.: Antioxidant properties of branched-chain amino acid derivatives. Chem. Pharm. Bull., 27: 1912-1916 (1979).
(140) Kim, S. K., Kim, Y. T., Byun, H. G., Nam, K. S., Joo, D. S. and Shahidi, F.: Isolation and characterization of antioxidative peptides from gelation hydrolysates of Alaska Pollack skin. J. Agric Food Chem., 49: 1984-1989 (2001).
(141) Kimura, T., Uchida, Y., Tomizawa, A., Hiraoka, Y., Fukushima, M. and Taneya, S.: Conformational changes in casein micelles during demineralization of skim milk by electrodialysis with ion exchange membranes. Nippon Nogeikagaku Kaishi, 65: 1213-1222 (1991).
(142) Kinoshita, E., Yamakoshi, J. and Kikuchi, M.: Purification and indentifcation of an angiotensin I-converting enzyme inhibitor from soy sauce. Biosci. Biotech. Biochem., 57: 1107-1110 (1993).
(143) Kitabatake N., Tani, Y. and Doi, E.: Rheological properties of heat-induced ovalbumin gels prepared by two-step one-step heating methods. J. Food Sci., 54: 1632-1638 (1989a).
(144) Kneifel, K. and Luhrs, G.: Nitrate removal by electrodialysis for brewing water. Desalination, 68: 203-209 (1988).
(145) Korhonen, H., Pihlanto-Leppala, A., Rantamaki, P. and Tupasela, T.: Impact of processing on bioactive proteins and peptides. Trends in Food Sci. & Technol., 9: 307-319 (1998).
(146) Krings, U., El-Saharty, Y. S., El-Zeany, B. A., Pabel, B. and Berger, R. G.: Antioxidant activity of extracts from roasted wheat germ. Food Chem., 71: 91-95 (2000).
(147) Lahl, W. J. and Braun, S. T.: Enzymatic production of protein hydrolysates for food use. Food Technol., 48: 68-71 (1994).
(148) Lanni, F., Sharp, D. G., Beckert, E. A., Dillon, E. S., Beard, D. and Beard, J. W.: The egg white inhibitor of influenza virus hemagglutination. I. Prepartion and properties of semi-purified inhibitor. J. Biol. Chem., 4: 17-22 (1949).
(149) Lehtinen, P. and Laakso, S.: Antioxidative-like effect of different cereals and cereal fractions in aqueous suspension. J. Agric. Food Chem., 45: 4606-4611 (1997).
(150) Leppala, A. P., Rokka, T. and Korhonen, H.: Angioensin I converting enzyme inhibitory peptides derived from bovine milk proteins. Int. Dairy J., 8: 325-331 (1998).
(151) Lin, C. Y. and Chiang, B. H.: Desalting and Recovery of Flavour Compounds from Salted Shrimp Processing Waste Water by Membrane Process. Int. J. Food Sci. and Technol., 28: 453-460 (1993).
(152) Lineweaver, H. and Murray, C. W.: Identificatioon of the trypsin inhibitor of egg white with ovomucoid. J. Biol. Chem., 171: 565-581 (1947).
(153) Lineweaver, H., Cunningham, F. E., Garibaldi, J. A. and Ijichi. K.: Heat stability of egg white proteins under minimal condition that kill salmonella. U. S., Agric. Res. Serv., 74-39 (1967).
(154) Loffler, A.: Proteolytic enzymes: Sources and applications. Food Tech. Jan: 63-70 (1986).
(155) Longsworth, L. G., Cannan, R. K. and Macinnes, D. A.: An electrophoretic study of the proteins of egg white. J. Am. Chem. Soc., 62: 2580-2590 (1940).
(156) Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J.: Protein measurement with the folin phenol reagent. J. Biol. Chem., 193: 265-267 (1951).
(157) Lu, Y. and Foo, L. Y.: Antioxiant and radical scavenging activities of polyphenols from apple pomace. Food Chem., 68: 81-85 (2000).
(158) Mackie, I. M.: Fish protein hydrolysates. Proc. Biochem., 31: 26-31(1982).
(159) Manley, C. H. and Ahmedi, S. The development of process flavors. Trends in Food Sci. & Technol., 6: 46-51 (1995).
(160) Mannhein, A. and Cheryan, M.: Continuous hydrolysis of milk protein in a membrane reactor, J. Food Sci., 55: 381-385 (1990).
(161) Martinez-Cayuela, M.: Oxygen free radicals and human disease. Biochemie., 77: 147-161 (1995).
(162) Maruyama, S., Miyoshi, S., and Tanaka, H.: Angiotensin I-converting enzyme inhibitory derived from Ficus carica. Agric. Biol. Chem., 53: 2763-2767 (1989).
(163) Matsuda, T., Watanabe, K. and Sato, Y.: Heat-induced aggregation of egg white proteins as studied by vertical flat-sheet polyacrylamide gel electrophoresis. J. Food Sci., 46: 1829-1834 (1981).
(164) Matsumra, N., Fujii, M., Takeda, Y. and Shimizu, T.: Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from bonito bowels. Biosci. Biotech. Biochem., 57: 1743-1744 (1993).
(165) Meisel, H. and Frister, H.: Chemicals characterization of a caseinophosphopeptides isolated from in vivo digests of a casein diet. Biol. Chem. Hoppe-Seyler, 369: 1275-1279 (1988).
(166) Melamed, M. D.: Electrophoretic properties of ovomucoid. J. Biochem., 103: 805-810 (1967).
(167) Migliore-Samour, D. and Jolles, P.: Casein, a prohormone with an immunomodulating role for the newborn? Experientia, 44: 188-193 (1988).
(168) Min, D. B., Lee, S. H. and Lee, E. C.: Singlet oxygen oxidation of vegetable oils. In: Flavor Chemistry of Lipid Foods (Min, D. B. and Smouse, T. H. ed.), pp. 57-97. American Oil Chemists Society, Champaign, USA. (1988).
(169) Mine, Y., Noutomi, T. and Haga, N.: Thermally induced changes in egg white proteins. J. Agric. Food Chem., 38: 2122-2125 (1990).
(170) Mine, Y.: Sulfhydryl groups changes in heat-induced soluble egg white aggregates in relation to molecular size. J. Food Sci., 57: 254-258 (1992).
(171) Mistry, B. S. and Min, D. B.: Oxidized flavor compounds in edible oils. In: Off-Flavors in Foods and Beverages (Charalambous, G. ed.), pp. 171-209. Elsevier, Amsterdam, the Netherlands (1992).
(172) Mitsuda, H., Yasumoto, K. and Iwami, K.: Antioxidative action of indole compounds during the autooxidation of linoleic acid. Eiyoto Shokuryo, 19: 210-214 (1966).
(173) Miyoshi, S., Ishikawa, H., Kaneki, T., Fukui, F.,Tanaka, H.,and Maruyama, S.: Structures and activity of angiotensin I-converting enzyme inhibitors in an α-zein hydrolysates. Agric. Biol. Chem., 55: 1313-1318 (1991).
(174) Murase, H., Nagao, A. and Terao, J.: Antioxidant and emulsifying activity of N-(long-chain-acyl) histidine and N-(long-chain-acyl) carnosine. J. Agric. Food Chem., 41: 1601-1604 (1993).
(175) Nakadai, T., Nansuno, S. and Iguchi.: The action of peptidase from Aspergillus oryzae in digestion of soybean protein. Agric. Biol. Chem., 36: 261 (1972).
(176) Nakadai, T., Nasuno, S. and Iguchi, N.: The action of peptidases from Asperigillus oryzae in digestion of soybean protein. Agric. Biol. Chem., 32: 261-272 (1977).
(177) Nakamura, R. and Matsuda, T.: A new protein band appearing in the electrophoresis pattern of egg white heated at below 60℃. J. Food Sci., 48: 87-91 (1983).
(178) Nakamura, T., Syukunobe, Y., Tomizawa, A., Shigematsu. and Koutake, M. Demineralization of cows milk casein hydrolyssates by electrodialysis. Nippon Shokuhin Kogyo Gakkaishi, 40: 545-551 (1993).
(179) Nakamura, Y., Yamamoto, N., Sakai, K., Okubo, A., Yamazaki, S. and Takano, T.: Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J. Dairy Sci., 78: 1253-1257 (1995).
(180) Nambudiry, D, D.: Lipid oxidation in fatty fish: The effect of salt content in the meat. J. Food Sci. Technol. 17: 176-178 (1980).
(181) Namiki, M.: Antioxidants/antimutagens in foods. Crit. Rev. Food Sci. Nutr., 29: 273-300 (1990).
(182) Nawar W. W.: Lipids. In: Food Chemistry (Fennema, O. R. ed.), 3rd ed., pp. 273-288. Marcel Dekker, Inc. New York, USA. (1996).
(183) Noguchi, M., Yamashita, M., Arai, S. and Fujimaki, M.: On the bittermasking activity of a glutamic acid-rich oligopeptide fraction. J. Food Sci., 40: 367-369 (1975).
(184) Oerjana, F. M. and Liston, J.: Agents of proteolysis and its inhibition in Patis (fish sauce) fermentation. J. Food Sci., 47: 198-203 (1982).
(185) Ohta-Yuno, N., Toryu, H., Higasa, T. Maeda, H., Okada, M. and Ohta, H.: Gelation properties of ovalbumin as affected by fatty acid salts. J. Food Sci., 61: 906-910 (1996).
(186) Okada, Y. and Okada, M.: Scavenging effect of water soluble proteins in broad beans on free radicals and active oxygen species. J. Agric. Food Chem., 46: 401-406 (1998).
(187) Pan, W. D., Chiang, B. H. and Chiang, P. C.: Desalination of the spent brine from pickled prunes processing by electrodialysis. J. Food Sci., 53: 134-137 (1988).
(188) Park, J. A.: Functional protein additives in surimi gels. J. Food Sci., 59: 525-527 (1994).
(189) Park, P. J., Jung, W. K., Nam, K. S., Shahidi, F. and Kim, S. K.: Purification and characterization of antioxidative peptides from protein hydrolysate of lecithin-free egg yolk. JAOCS., 78: 651-656 (2001).
(190) Park, Y. K. and Draetta, Y. Y.: Application of several proteolytic enzymes for tenderizing meat. Coletanea do Instituto de Tecnologia de Alimentos. 3: 29-40 (1970).
(191) Parker, F., Migliore-Samour, O., Floch, F., Zerial, A., Werner, G. H., Jolles, J., Casaretto, M., Zahn, H. and Jolles, P.: Immunostimulating hexapeptide from human case in amino acid sequence, synthesis and biological properties. Eur, J. Biochem., 145: 677-682 (1984).
(192) Phillip, B. J., Carroll P. A., Tee, A. C. and Anderson, D.: Microsome-mediated clastogenicity of butylated hydroxyanisole (BHA) in cultured Chinese hamster ovary cell: The possible role of reactive oxygen species. Mutat. Res., 214: 105-114 (1989).
(193) Phillips, R. D. and Beuchat, L. R.: Enzyme modification of protein. In: Protein Functionality in Foods (John, P. ed.), Cherry, ACS Symposium Series 147, pp. 275-298 (1981).
(194) Pilar, M., Victoria, V., Cristina, P. B., Antonio, I. and Climent, J. V.: The role of 8-hydroxy-2''deoxyguanosine in riflamycin-induced and damage. Free Radical Biol. Med., 18: 747-755 (1995).
(195) Pomeranz, Y.: Functional properties of food components. Acadamic Press, Inc., pp. 155-188 (1985).
(196) Powrie, W. D. and Nakai, S.: The chemistry of eggs and egg products. In: Egg Science and Technology (Stadelman, W. J. and Cotterill, O. J. ed.), 3rd ed., AVI Publishing Company Inc. Westport, Connecticut, U.S.A. (1986).
(197) Quaglia, G. B. and Orban, E.: Enzymatic solubilisation of sardine (Sardina pilchardus) by commercial proteases. J. Sci. Food Agric., 38: 263-269 (1987).
(198) Raeker, M. and Johnson, L. A.: Thermal and functional properties of bovine blood plasma and egg white proteins. J. Food Sci., 60: 685-706 (1995).
(199) Ramabadran, K. and Bansinath, M.: Pharmacology of β-casomorphins, opioid peptides derived from milk protein. Asia. Pac. J. Pharmacol., 4: 45-49 (1989).
(200) Rebeca, B. D., Pena-Vera, M. T. and Diaz-castaneda, M.: Production of fish protein hydrolysates with bacterial proteases, yield and nutritional value. J. Food Sci., 56: 309-314 (1991).
(201) Reiter, R. J.: Inhibitory effects of melatonin on ferric nitrilotriacetate- induced lipid peroxidation and oxidative DNA damage in the rat kidney. Toxic., 139: 81-91 (1999).
(202) Richards, D. M., Dean, R. T. and Jassup, W.: Membrane protein are critical targets in free radical mediated cytolysis. Biochem. Biophys. Acta., 946: 281-288 (1988).
(203) Rival, S. G. Boeriu, C. G. and Wichers, H. J.: Caseins and casein hydrolysates. 2. antioxidative properties and relevance to lipoxygenase inhibition. J. Agric. Food Chem., 49: 295-302 (2001).
(204) Roberts, J. J.: Membrane technology: Basic principles, latst developments and applications. Food Industries, 47: 27-29 (1994).
(205) Salem, K., Sandeaux, J., Molenat, J., Sandeaux, R. and Gavach, C.: Elimination of nitrate from drinking water by electro- chemical membrane processes. Desalination, 101: 123-131 (1995).
(206) SAS: Statistical Analysis System, SAS user''s guide: Statistics, SAS Institute, Inc., Cary, NC, USA. (1995).
(207) Sasaki, A., Mcclements, D. J. and Decker, E. A.: Antioxidant activity of whey in a salmon oil emulsion. J. Food Sci., 65: 1325-1329 (2000).
(208) Scott, D.: Miscellaneous applications of enzymes. In: Enzymes in Food Processing (Reed, G. ed.), pp. 493. Academic Press, New York, USA. (1975).
(209) Seideman, W. C., Cotterill, O. J. and Funk, E. M.: Factors affecting heat coagulation of egg white. Poultry Sci., 43: 406-417 (1963).
(210) Seki, T., Kawasaki, Y., Tamura, M., Tada, M. and Okai, H.: Further study on the salty peptide ornithyl-β-alanine. Some effects of pH and additive ions on the saltiness. J. Agric. Food Chem., 38: 25-29 (1990).
(211) Shahidi, F. and Amarowicz, R.: Antioxidant activity of protein hydrolysates from aquatic species, JAOCS., 73: 1197-1199 (1996).
(212) Shahidi, F., Han, X. O. and Synowiecki, J.: Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chem., 53: 285-293 (1995).
(213) Shahidi, F., Janitha, P. K. and Wanasundara, P. D.: Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 32: 67-103 (1992).
(214) Shigenaga, M. K., Hagen, T. M. and Ames, B. N.: Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci., 91: 10771-10778 (1994).
(215) Shih, F. F.: Modification of food protein by non-enzymatic methods. In: Biochemistry of Food Proteins (B. J. F., Hudson ed.), Ch. 7., Elsevier Applied Science Publishers, London, England (1992).
(216) Smith, M. B. and Back, J. F.: Studies on ovalbumin. II. The formation and properties of S-ovalbumin, a more stable form of ovalbumin. Aust. J. Biol. Sci., 18: 365-377 (1965).
(217) Stan, E. Y. and Chernikov, M. P.: Formation of a peptide inhibitor of gastric secretion from rat milk proteins in vivo. Bull. Exp. Biol. Med., 94: 1087-1089 (1982).
(218) Sternberg, M.: Microbial rennets. Adv. Appl. Microbiol. 20: 135 (1976).
(219) Suetsuna, K. Ukeda, H. and Ochi, H.: Isolation and characterization of free radical scavenging activities peptides derived from casein. J. Nutr. Biochem., 11: 128-131 (2000).
(220) Suetsuna, K.: Antioxidant peptides from the protease digest of prawn (Penaeus japonicus) muscle. Mar. Biotechnol., 2: 5-10 (2000).
(221) Suetsuna, K.: Separation and identification of antioxidant peptides from proteolytic digest of dried bonito. Nippon Suisan Gakkaishi, 65: 92-96 (1999).
(222) Sugiyama, K., Egawa, M., Ohzuka, H. and Oba, K.: Characteristic of sardine muscle hydrolysate prepared by various enzymatic treatments. Nippon Suisan Gakkaishi, 57: 475-479 (1991).
(223) Tamura, M., Mori, N., Miyoshi, T., Koyama, S., Kohri, H. and Okai, H.: Practical debittering using model peptides and related compounds. Agric. Biol. Chem., 54: 41-51 (1990).
(224) Thomas, J.: The role of free radicals and antioxidants: how do we know that they are working? Crit. Rev. Food Sci. Nutr., 31: 21-39 (1995).
(225) Tong, L. M., Sasaki, S., McClements, D. J. and Decker, E. A.: Mechanisms of the antioxidant activity of a high molecular weight fraction of whey. J. Agric. Food Chem., 48: 1473-1478 (2000).
(226) Trelstad, R. L., Lawley, K. R. and Holmes, L. B.: Nonenzymatic hydroxylations of proline and lysine by reduced oxygen derivatives. Nature, 289: 310-312 (1981).
(227) Tsuge, N., Eikawa, Y., Nomura, Y., Yamamoto, M. and Sugisawa, K.: Antioxidative activity of peptides prepared by enzymic hydrolysis of egg white albumin. Nippon Nogeikagaku Kaishi, 65: 1635-1641 (1991).
(228) Wade, A. M. and Tucker, H. N.: Antioxidant characteristics of L-histidine. J. Nutr. Biochem., 9: 308-315 (1998).
(229) Wanasundara, U. N. and Shahidi, F.: Antioxidant and pro-oxidant activity of green tea extracts in marine oils. Food Chem., 63: 335-342 (1998).
(230) Warner, R. C.: Egg proteins. In: The Proteins (Neurath, H. and Bailey, K. ed.), Academic Press, Inc. New York, USA. (1954).
(231) Watanabe, K., Matsuda, T. and Nakamura, R.: Heat-induced aggregation and denaturation of egg white proteins in acid media. J. Food Sci., 50: 507-510 (1985).
(232) Wayner, D. D. M., Burton, G. W., Ingold, K. U., Barclay, L. R. C. and Locke, S. J.: The relative contributions of vitamin E, urate, ascorbate, and proteins to the total peroxyl radical trapping antioxidant activity of human blood plasma. Biochim. Biophys. Acta, 924: 408-419 (1987).
(233) Weber, K. and Osborn, M.: The reliability of molecular weight determinations by dodecyl sulfate polyacrylamide gel electrophoresis. J. Biol. Chem., 244: 4406-4409 (1969).
(234) Weier, A. J., Glatz, B. A. and Glatz, C. E.: Recovery of propionic and acetic acids from fermentation broth by electrodialysis. Biotechnol. Prog., 8: 479-485 (1992).
(235) Whitaker, J. R. and Tannenbaum, S. R.: Food Proteins (Feeney, P. E. and Osuga, D. T. ed.), AVI publishing Co. Inc. New York, USA. (1977).
(236) Wise, R. W., Ketterer, B. and Hansem, I. A.: Prealbumins of embryonic chick plasma. Comp. Biochem. Physiol., 12: 439-443 (1964).
(237) Wong, D. W. S.: Food Enzymes: Structure and mechanism. Chapman and Hall Press. New York, USA. (1995).
(238) Woodwards, S. A. and Cotterill, O. J.: Electrophoresis and chromatography of heat treated plain, sugared and salted whole egg. J. Food Sci., 48: 501-506 (1983).
(239) Wu, J. and Ding, X.: Hypotensive and Physiological effect of angioensin converting enzyme inhibitory peptides derived from soy protein on spontaneously hypertensive rats. J. Agric. Food Chem., 49: 501-506 (2001).
(240) Xu, J., Shimoyamada, M. and Watanabe, K.: Gelation of egg white proteins as affected by combined heating and freezing. J. Food Sci., 62: 963-966 (1997).
(241) Yagi, K.: Lipid peroxides and human disease. Chem. Phys. Lipids, 45: 337-341 (1987).
(242) Yamaguchi, N., Naito, S., Yokoo, Y. and Fujimaki, M.: Stability of dried model food consisted of soybean hydrolysates and lard. Nippon Shokuhin Kogyo Gakkaishi, 27: 51-55 (1980a).
(243) Yamaguchi, N., Yokoo, Y. and Fujimaki, M.: Studies on antioxidatice activities of amino acid compounds on fats and oils, II: antioxidative activities of dipeptides and their synergistic effects on tocopherol. Nippon Shokuhin Kogyo Gakkaishi, 22: 425-430 (1975).
(244) Yamaguchi, N., Yokoo, Y. and Fujimaki, M.: Studies on antioxidative activities of amino compounds on fats and oils. IV. Antioxidative activities of protein hydrolysates. Nippon Shokuhin Kogyo Gakkaishi, 26: 65-70 (1979).
(245) Yamaguchi, N.: Studies on antioxidative activities of amino compounds on fats and oils. Part I. Oxidation of methionine during courses of autoxidation of linoleic acid. Nippon Shokuhin Kogyo Gakkaishi, 18: 313-318 (1971).
(246) Yang, R., Kim, K. W., Lee, J. H., Youn, J. E. and Yu, J. H.: Study on meat tenderizer. I. Tenderization ability of commercial meat tenderizer. Korean J. Food Sci. Technol., 7: 221-228 (1975).
(247) Yano, S., Suzmasa, K., and Unatsu, G.: Isolation from α-zein of thermolysin peptides with angiotensin I-converting enzyme inhibitory activity. Biosci. Biotect. Biochem., 60: 661-663 (1996).
(248) Yee, J. J. and Shipe W. F.: Using enzymatic proteolysis to reduce copper-protein catalysis of lipid oxidation. J. Food Sci., 46: 966-967, 969 (1981).
(249) Yee, J. J., Shipe, W. F. and Kinsella, J. E.: Antioxidant effects of soy protein hydrolysates on copper-catalyzed methyl linoleate oxidation. J. Food Sci., 45: 1082-1083 (1980).
(250) Yen, G. C., Duh, P. D. and Chuang, D. Y.: Antioxidant activity of anthraquinones and anthrone. Food Chem., 70: 437-441 (2000).
(251) Yokoyama, K., Chiba, H. and Yoshikawa, M.: Peptide inhibitors for angiotensin I-converting enzyme from trermolysin digest of dried bonito. Biosci. Biotech. Biochem., 56: 1541-1545 (1992).
(252) Yoo, B. and Lee, C. M.: Rheological relationships between surimi sol and gel as affected by ingredients. J. Food Sci., 58: 880-883 (1993).
(253) Yoshinaka, R., Sato, M., Tsuchiya, N. and Ikeda, S.: Production of fish sauce by utilization of its viscera enzyme. Bull. Jap. Soc. Sci. Fish., 49: 463-469 (1983).
(254) Zastawny, T. H., Dabrowska, M., Jaskolska, T., Klimarczyk, M., Kulinski, L., Koszela, A., Szczeniewicz, M., Sliwinska, M., Witkowski, P. and Olinski, R.: Comparison of oxidative base damage in mitochondrial and nuclear DNA. Free Rad. Biol. Med., 24: 722-725 (1998)。
(255) Zhang, S. T., Matsuoka, K. and Toda, K.: Production and recovery of propionic and acetic acids in electrodialysis culture of Propionibacterium shermanii. J. Ferment. Bioeng., 75: 276-282 (1993).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. (40) 錢阜甯:魚肉蛋白之酵素水解。食品工業月刊,26: 27-35 (1994)。
2. (39) 蕭錦良、周正俊:食鹽對Actinomucor taiwanensis各水解酵素活性及豆腐受質酵素水解之影響。食品科學,16: 210-217(1989)。
3. (37) 鄭名凡:蛋白質水解物的功能與應用。食品資訊,160: 49-54 (1999)。
4. (35) 劉毓蕙:乳蛋白中的生物活性太。食品工業,31: 19-28 (1999)。
5. (34) 劉茂宏、張勝善、沈華山、洪連欉、蕭興浦:蛋白溶菌酵素對貢丸之保存效果。中國畜牧學會會誌,23: 433-440 (1994)。
6. (29) 楊勝欽、林郁芳:雞蛋卵白的加熱凝膠探討及卵白凍的研究開發。食品科學,17: 123-137 (1990)。
7. (27) 黃健政、蔡震壽:加熱處理後雞、鴨蛋與鹹鴨蛋蛋白液化學性質與膠體質地特性的變化。嘉義大學學報,68: 35-54 (2000)。
8. (26) 黃健政、蔡震壽、張瑞郎:乾燥方法對鹹鴨蛋蛋白粉性質及其功能特性之影響。食品科學,23: 819-829 (1996)。
9. (25) 黃怡菁、楊勝欽:製造條件對於雞蛋卵白點心品質的影響。食品科學,20: 291-303 (1993)。
10. (24) 程竹青:蛋白質水解液苦味之探討。食品工業月刊,25: 32-39 (1996).
11. (19) 陳怡宏:蛋白質酵素水解液之生產技術。食品工業,29: 34-40 (1997).
12. (18) 陳怡宏:生物活性胜太及其合成。食品工業月刊,31: 1-8 (1999).
13. (17) 張勝善、黃森源、沈華山:蛋白飲料製造之研究。中國畜牧學會會誌, 14: 77-87 (1985)。
14. (15) 涂茂園:逆滲透及電透析。石油季刊,30: 53-67 (1994)。
15. (8) 沈華山、張勝善、洪連欉:蛋白粉製造之研究,II。蛋白粉品質及應用實驗。中國畜牧學會會誌,19: 87-97 (1990)。