跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/30 01:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳炯翰
研究生(外文):Jong Hang Chen
論文名稱:澱粉酯化、交鏈化處理後物理性質的探討及其在冷凍食品上的應用
論文名稱(外文):The Physical Properties of Esterificated and Cross-linked Starch and Application on Frozen-food Manufacture
指導教授:張瑞郎張瑞郎引用關係
指導教授(外文):R. L. Chang
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系碩士班
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:105
中文關鍵詞:木薯交鏈化酯化雙重修飾澱粉小麥
外文關鍵詞:Tapiocacross-linkingEsterificationdual modificationsstarchWheat
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1441
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
中 文 摘 要
本論文以木薯( Tapioca )與小麥( Wheat )澱粉材料進行抗老化研究 。取澱粉量3%的醋酸酐( acetic anhydride )為酯化試劑進行酯化作用( esterification )得到酯化澱粉,0.03%的三氯氧磷( phosphorus oxide chloride )為交鏈化試劑進行交鏈化作用得到交鏈化澱粉,另外取酯化澱粉行交鏈化作用、交鏈化澱粉行酯化作用得到酯化配合交鏈化的雙重修飾澱粉進行抗老化效果的分析比較。研究結果發現,酯化會降低糊化溫度 ( 木薯從60.8下降至51.5℃,小麥從56.7下降至46.1 ℃ )、提高尖峰粘度( 木薯從739上升至922BU,小麥從87上升至384BU )促進熱降解反應( 木薯從448上升至581BU,小麥從0上升至148BU ),交鏈化可抑制熱降解反應( 木薯從448降至1.3BU )。抗老化方面,酯化有顯著效果,木薯老化度為0.0976小麥為0.180( J/g )、糊的透光度經28天冷藏亦無改變、冷凍-解凍循環穩定度經7循環後木薯澱粉離水率從44.9降至1.05%小麥澱粉從52.5降至22.9%。此外,經交鏈化後酯化的修飾澱粉糊化溫度為木薯51.7,小麥49.5℃、熱降解反應為木薯56,小麥40BU經7次冷凍-解凍循環後離水率發現木薯無離水現象發生而小麥為20.8%;反之,酯化後交鏈化的修飾澱粉其熱降解反應及經7次的冷凍-解凍循環後離水率皆較前者為高。接著,以示差熱掃描分析(DSC)探討添加修飾澱粉的抗老化效果。結果顯示,以添加方式亦具抑制澱粉老化之效果,但對澱粉膠的質地亦有影響。
取澱粉混合物製做水晶餃進行官能品評,結果表示,純木薯澱粉接受度較高,經添加交鏈化後酯化的澱粉接受最低;小麥澱粉部份則相反,以添加酯化後交鏈化、交鏈化後酯化澱粉的接受較高,純小麥及添加交鏈化澱粉接受度最差。
因此,於冷凍食品中可利用交鏈化後酯化之修飾澱粉來提高產品的保水力,賦予產品的抗老化特性,但亦須進一步考慮質地部份的問題以得到最佳的產品。
關鍵字:木薯、小麥、酯化、交鏈化、雙重修飾澱粉

Abstract
In this study, the starch of both tapioca and wheat were used for antirretogradation approach. The esterification, cross-linking modification, or dual modifications by each after were employed to find out the optimal process operation for modified starch product. The data shows the esterification of starch may decreasing the gelatinization temperature (down to 51.5℃ and 46.1℃of tapioca and wheat, respectively), elevating the top viscosity (up to 922 BU and 384 BU of tapioca and wheat, respectively) and accelerating the breakdown reaction (up to 581 BU and 148 BU of tapioca and wheat, respectively). However, the cross-linking modification may inhibit the breakdown reaction, down to 1.3 BU, of cross-linking starch of tapioca. The esterificated starch shows the significant results on antiretrogradation that past transparencies were consistent in 28 days under 4℃ storage, the transparencies after 7 cycles of freeze-thaw stability assay were down to 1.05﹪ and 22.9﹪, the degree of antiretrogradation were 0.0976 and 0.180 (J/g) of tapioca and wheat, respectively. Further more, the assays results of cross-linking modification before esterification of dual modified starch in gelatinization temperature were 51.7℃ and 49.5℃, the breakdown reaction were 56 BU and 40 BU and the transparencies after 7 cycles of freeze-thaw stability were 0 and 22.9﹪of tapioca and wheat, respectively. Otherwise, cross-linking modification after esterification of dual modified starch shows the higher values in all 3 assays than cross-linking modification before esterification of dual modified starch of both tapioca and wheat. Applying the modified starch also improved the ability of antiretrogradation, but influenced the texture of the past by DSC investigation.
The crystal dumplings were made from variant composition of modified or unmodified starch for sensory evaluation. The result shows the crystal dumplings made from tapioca starch with the highest acceptability is unmodified starch without applying any modified starch and the poorest is applying the cross-linking modification after esterificated starch. However, the crystal dumplings made from wheat starch with the higher acceptability is applying the dual modified starch, cross-linking modification after or before esterification, but the unmodified or applying the cross-linking modified starch got the poor acceptability.
Therefore, applying the cross-linking before esterification dual modified starch may elevate the water holding capacity and improve the characteristics of antiretrogradation to the frozen food application, and under a balance with the acceptability of texture for creating the most popular food product.
Keywords: Tapioca, Wheat, Esterification, cross-linking, dual modifications.

目 錄
圖目錄……………………………………………………………………………… IV
表目錄……………………………………………………………………………… VI
中文摘要……………………………………………………………………………VII
英文摘要…………………………………………………………………………… IX
壹、 前言…………………………………………………………………………….1
貳、 文獻回顧……………………………………………………………………….3
一、 澱粉的介紹………………………………………………………………..3
(一)、澱粉顆粒的組成及結構………………………………………………3
(二)、澱粉的糊化……………………………………………………….….14
(三)、澱粉的回凝……………………………………………………….….16
二、 修飾澱粉的介紹…………………………………………………………21
(一)、酯化澱粉…………………………………………………………….23
(二)、交鏈化澱粉………………………………………………………….25
(三)、雙重修飾澱粉…………………………………………………….…33
三、 修飾澱粉在食品的應用…………………………………………………35
參、 研究目地……………………………………………………………………...37
肆、 材料與方法…………………………………………………………………...39
一、 材料………………………………………………………………………39
二、 修飾澱粉的製備…………………………………………………………40
三、 實驗方法…………………………………………………………………43
(一)、基本成分分析………………………………………………………..43
(二)、理化特性分析………………………………………………………..43
1. 直鏈澱粉含量測定………………………………………………...43
2. 澱粉醋酸酯取代度的測定………………………………………...44
3. 交鏈度之測定……………………………………………………...45
4. 連續糊化粘度之測定……………………………………………...47
5. 示差熱掃描分析之測定…………………………………………...47
6. 澱粉的透光率之測定……………………………………………...48
7. 溶解度與膨潤度的測定…………………………………………...48
8. 冷凍-解凍循環穩定度的測定…………………………………...49
9. 粉體白度的測定…………………………………………………...49
10. 質地分析…………………………………………………………...49
11. 水晶餃的製備……………………………………………………...50
12. 官能品評…………………………………………………………...50
13. 統計分析…………………………………………………………...50
伍、 結果與討論…………………………………………………………………….51
一、 基本成份分析……………………………………………………………….51
二、 直鏈澱粉含量……………………………………………………………...51
三、 修飾澱粉之酯化取代度與交鏈度………………………………………..53
四、 經不同修飾作用對木薯及小麥澱粉粉體白度的影響…………………55
五、 不同處理的修飾澱粉之連續糊化粘度的影響…………………………57
六、 不同處理的修飾澱粉之糊化性質的影響………………………………62
七、 不同處理的修飾澱粉對澱粉膨潤力之影響……………………………67
八、 不同處理的修飾澱粉對澱粉溶解度之影響解凍………………………70
九、 不同處理的修飾澱粉對澱粉糊透光度之影響…………………………73
十、 不同處理的修飾澱粉對冷凍─解凍循環穩定度之探討………………77
十一、 木薯及小麥澱粉經不同修飾作用後澱粉膠之質地分析…………….81
十二、 添加33﹪的修飾澱粉經糊化低溫儲藏後之示差熱掃描分析………84
十三、 添加33﹪的修飾澱粉其澱粉膠之質地分析…………………………87
十四、 添加33﹪修飾澱粉的水晶餃官能品評………………………………89
陸、 結論…………………………………………………………………………….92
柒、 參考文獻……………………………………………………………………….94
圖 目 錄
圖一、木薯澱粉顆粒之光學顯微鏡圖……………………………………………….4
圖二、木薯澱粉顆粒之掃描式電子顯微鏡圖……………………………………….4
圖三、小麥澱粉顆粒之光學顯微鏡圖……………………………………………….5
圖四、小麥澱粉顆粒之掃描式電子顯微鏡圖……………………………………….5
圖五、澱粉之理論結構圖…………………………………………………………….7
圖六、不同澱粉之X-射線繞射圖譜……………………………………………….9
圖七、A結晶型澱粉立體結構圖……………………………………………………10
圖八、B結晶型澱粉立體結構圖……………………………………………………11
圖九、脫水葡萄糖苷中碳原子的位置……………………………………………13
圖十、澱粉的交鏈化反應式………………………………………………………26
圖十一、不同交鏈程度對玉米澱粉粘度的影響…………………………………28
圖十二、交鏈對糯性玉米澱粉粘度的影響………………………………………30
圖十三、交鏈對糯性玉米澱粉剪力的影響………………………………………31
圖十四、經不同修飾作用對木薯及小麥澱粉粉體白度之影響…………………56
圖十五、經不同修飾處理對木薯澱粉連續糊化粘度圖之影響…………………60
圖十六、經不同修飾處理對小麥澱粉連續糊化粘度圖之影響…………………61
圖十七、不同修飾處理的木薯澱粉並且經糊化及低溫儲藏後之示差熱掃描分析圖…………………………………………………………………………65
圖十八、不同修飾處理的小麥澱粉並且經糊化及低溫貯藏後之示差熱掃描分析圖…………………………………………………………………………66
圖十九、經不同修飾作用對木薯及小麥澱粉澎潤力之影響……………………69
圖二十、經不同修飾作用對木薯及小麥澱粉溶解度之影響……………………72
圖二十一、木薯及其修飾澱粉之透光度變化……………………………………75
圖二十二、小麥及其修飾澱粉之透光度變化……………………………………76
圖二十三、木薯及其修飾澱粉膠內冷凍-解凍循環穩定之變化………………79
圖二十四、小麥及其修飾澱粉膠內冷凍-解凍循環穩定之變化………………80
圖二十五、不同修飾處理的木薯澱粉和天然澱粉混合後經糊化低溫儲藏後之示差熱掃描分析圖………………………………………………………85
圖二十六、不同修飾處理的小麥澱粉和天然澱粉混合後經糊化低溫儲藏後之示差熱掃描分析圖………………………………………………………86
表 目 錄
表一、不同澱粉顆粒大小…………………………………………………………….6
表二、各種修飾澱粉之分類………………………………………………………...22
表三、修飾澱粉的特性……………………………………………………………...34
表四、木薯與小麥澱粉之化學組成分析…………………………………………...52
表五、各種修飾澱粉之酯化取代度與交鏈度……………………………………...54
表六、木薯與小麥澱粉經不同修飾作用後之連續糊化粘度的變化……………...59
表七、不同修飾方法對木薯及小麥澱粉糊化行為和老化度的影響……………...64
表八、以木薯及小麥澱粉經不同修飾作用反澱粉膠之質地分析………………..83
表九、以木薯及小麥澱粉混以不同修飾澱粉後澱粉膠之質地分析……………...88
表十、水晶餃之順位品評試驗數據………………………………………………...90
表十一、水晶餃之順位品評試驗數據……………………………………………...91
柒、參考文獻
王怡晶。1995。米澱粉回凝動力學之探討。靜宜大學食品營養學系碩士論文。
杜易學。1999。交鏈化糯性米穀粉在湯圓產品應用上之研究。國立中興大學食品科學系碩士論文。
吳茂霖、紅素卿。1998。天然澱粉、修飾澱粉及其在食品業的應用。食品資訊。145:45-49。
吳景陽。1989。修飾澱粉。食品工業。21:9-16。
李群立。1989。醋酸及磷酸澱粉之物理及化學性質之研究。國立中興大學食品科學系碩士論文。
張力田。1992。變性澱粉。華南理工大學出版社。
張友松。1989。變性澱粉生產與應用手冊。變性澱粉生產與應用手冊編委會。
張燕萍。2001。變性澱粉製造與應用。化學化工出版社。
張曙明、呂政義。1982。交鏈澱粉及其粉絲品質之探討。食品科學。9:148-160。
陳樺翰。2000。糯性、非糯性及樹薯澱粉經交鏈化後其理化特性之研究。國立中興大學食品科學系碩士論文。
陳季洲、盧訓。1998。糯品種稻米澱粉理化特性分析。中國農化會誌。36:311-322。
陳賢哲。1983。各種食品加工用化工澱粉的利用特性。食品工業。15〈7〉:24。
黃瑞美、呂政義、蔣見美。1988。傳統式鳳片糕老化機制之探討。中國農化會誌。26〈3〉:338-352。
彭秋妹、王家仁。食品官能檢查手冊。食品工業發展研究所。
楊淑琴。1989。樹薯澱粉磷酸架橋化動力學之探討。國立台灣大學食品科技研究所碩士論文。
葉妹蘭。1991。修飾米澱粉反應速率及物理化學性質之探討。國立台灣大學食品科技研究所碩士論文。
廖杏琦。1998。梗糯品種米澱粉之細微結構與理化特性之探討。國立中興大學食品科學系碩士論文。
劉亞偉。2001。澱粉生產及其深加工技術。中國輕工業出版社。
蕭棋娟。1997。不同添加物對芋澱粉回凝及芋澱粉膠安定性之影響。靜宜大學食品營養學系碩士論文。
AACC. 1983. Approved methods of the American Association of Cereal Chemists, 8th ed., American Association of Cereal Chemists Inc., St. Paul, MN, USA.
Biliaderis, C. G., and Zawistowski, J. 1990. Viscoelastic behavior of aging starch gels: effects of concentration, temperature, and starch hydrolyzates on network properties. Cereal Chem. 67:240.
Biliaderis, C. G. 1992. Characterization of starch networks by small strain dynamic rheometry. p87 in “Development in carbohydrate chemistry “ Alexander, R. J., and Zobel, H. F. eds. The American Association of Cereal Chemistry.
Biliaderis, C. G., Page, C. M., Maurice, T. J., and Juliano, B. O. 1986. Thermal characterization of rice starches: a polymeric approach to phase transitions of granular starch. J. Agric. Food Chem. 34(1):6-14.
Biliaderis, C. G., Maurice, T. J., and Vose, J. R. 1980. Starch gelatinization phenomena studied by differential scanning calorimetry. J. Food Sci. 45:1669-1674, 1680.
Briggs, D. R., and Hanig, M. 1946. Chemical state of phospherus in starch as indicated by titration curves on electrodialyzed starches. Cereal Chem. 23(5): 277.
Chang, S. M., and Liu, L. C. 1991. Retrogradation of rice starches studies by differential scanning calorimetry and influence of sugars, NaCl and lipids. J. Food Sci. 56(2): 564-566, 570.
Chinachoti, P., Steinberg, M. P., and Villota, R. 1990. A model for quantitating energy and degree of starch gelatinization based on water, sugar and salt contents. J, Food Sci. 55(2): 543-546.
Cooke, D., and Gidley, M. J. 1992. Loss of crystalline and molecular order during starch gelatinization: Origin of enthalpic transition. Carbohydr. Res. 227: 103-112.
Craig, S. A. S., Maningate, C. C., Seib, P. A., and Hoseney, R. C. 1989. Starch paste clarity. Cereal Chem. 66: 173-182.
Eliasson, A. C., and Ljunger, G. 1988. Interactions between amylopectin and lipid additives during retrogradation in a model system . J. Sci. Food Agric. 44(4): 353-361.
Eliasson, A. C. 1985. Retrogradation of starch as measured by differential scanning calorimetry in “ New Approaches to Research on Cereal Carbohydrates “ R. D. Hill and L. Munck (eds), 93-98. Elaevier Science Publishers B. V., Amsterdam.
Ellis, H. S., Ring, S. G., and Whittan, M. 1988. Time-dependent changes in the size and voiume of gelatinized starch granules on storage. Food Hydrocolloids. 2(4): 321-328.
French, D. 1984. Organization of starch granules. p183 in “ starch: Chemistry and technology “ second ed. Whistler, R. L., BeMiller, J. M., and Paschall, E. F. eds. Academic Press. N. Y. NY.
Gallant, D. J., Bouchet, B., and Baldwin, P. M. 1997. Microscopy of starch: evidence of a new level of granule organization. Carbohydr. Polym. 32(3/4): 177-191.
Gramera, R, E., Heerema, J., and Parrish, F. W. 1966. Distribution and structural from of phosphat ester groups in commercial starch phosphates. Cereal Chem. 43(1): 104.
Gudmundsson, M., and Eliasson, A. C. 1990. Retrogradation of amylopectein and the effects of amylose and added surfactants/emulsifiers. Carbohydr. Polym. 13: 295-315.
Hibi, Y., Kitamura, S., and Kuge, T. 1990. Effect of lipids on the retrogradation of cooked rice. Cereal Chem. 67(1): 7-10.
Hizukuri, S. 1985. Relationship between the distribution of the chain length of amylopectein and crystalline structure of starch granules. Carbohydr. Res. 141(2): 295-306.
Hoover, R., and Sosulski, F. 1986. Effect of cross-linking on functional properties of legume starches. Starch/starke. 38:149-155.
Hoseney, R. C. 1986b. Cereal Starch. Ch. 2, In “ Principles of Cereal Science and Technology “ R. C. Hoseney (Ed.), 33-68. American Association of Cereal Chemists, Inc., St. Paul. Minnesota, USA.
Huang, J. J., and White, P. J. 1993. Waxy corn starch: monoglyceride interaction in a model system. Cereal Chem. 70(1): 42-47,
Huang, R. M., Chang, W. H., Chang, Y. H., and Lii, C. Y. 1994. Phase transition of rice starch and flour gels. Cereal Chem. 71: 202-207.
I’Anson, K. J., Miles, M. J., Morris, V. J., Besfod, L. S., Jarvis, D. A., and Marsh, R. A. 1990. The effects of added sugars on the retrogradation of wheat starch gels. J. Cereal Sci. 11(3): 243-248.
Imberty, A., Chanzy, H., and Perez, S. 1987. New three dimensional structure for A-type starch. Macromolecules 20: 2634.
Imberty, A., and Perez, S. 1988. A revisit to the three dimensional structure for B-type starch. Biopolymers 27:1205.
Jane, J., and Chen, J. 1992. Effect of amylose molecular size and amylopectein branch chain length in paste properties of starch. Cereal Chem. 69(1):60-65.
Jane, J., Wong, K. S., and McPherson, A. E. 1997. Branch structure differece in starches of A- and B-type J-ray patterns revealed by their Naegeli dextrins. Carbohydr. Res. 300(3): 219-227.
Juliano, B. O., Perez, C. M., Alyoshin, E. P., Romanov, V. B., Bean, M. M., and Nishita, A. B. 1985. Cooprative test on amylography of milled rice flour for pasting viscosity and starch gelatinization temperature. Starch/Starke 37(2): 40-50.
Kim, S.K., and D’Appolonia, B.L. 1977. Effect of pentosans on the retrogradation wheat starch gels. Cereal Chem. 54(1): 150-160.
Koch, V. H., Bommer, H. D., and Koppers, J. 1982. Anaiytische untersuchungen von phosphatvernetzten starken. Starch/Starke. 34: 16-21.
Kohyama, K., and Nishinari, K. 1991. Effect of soluble sugars on gelatinization and retrogradation of sweet potato starch. J. Agric. Food Chem. 39(8): 1406-1410.
Leach, H. W., and Schoch, T. J. 1962. Structure of the starch granule. III. Solubilities of granular starches in dimethyl sulfoxide. Cereal Chem. 39: 318-327.
Levievre, J. 1976. Theory of gelatinization in a starch-water-solute system. Polymer. 17:854.
Light, J. M. 1990. Modified food starches: Why, What,Where, and how. Cereal Foods World. 35:1081-1087.
Lii, C. Y., Shao, Y. Y., and Tseng, K. H. 1995. Gelation mechanism and rheologic properties of rice starch. Cereal Chem. 72(4): 393-400.
Lund, D. 1984. Influence of time, temperature, moisture, ingredients and processing conditions on starch gelatinization. CRC critical reviews in food science and nutrition. 20(4): 249.
Maurice, T. J., Slade, L., Sirett, R. R., and Page, C. M. 1985. Polysaccaride-water interactions: Thermal behavior of starch. In Properties of Water in Food, D. Simatos, and J.L. Multon (ED.) p.211-227. Martinus Nijhoff Publisher, Dordrecht, Netherland.
Mciver, R. G., Axford, D. W. E., Colwell, K. H., and Elton, G. A. H. 1968. Kinectic study of the retrogradation of gelatinization starch. J. Sci. Food Agric. 19: 560-563.
Merca, F. E., and Juliano, B. O. 1981. Physicochemical properties of starch and intermidiate-amylose and waxy rices differing in grain quality. Starch/Starke. 33:253.
Miles, M. J., Morris, V. J., and Ring, S. G. 1984. Some recent obaervations on the retrogradation of amylose. Carbohydr. Polym. 4(1): 73-77.
Mitchell, W. A. 1972. Analyzing the metaphosphate stabilization reaction of starch by acid titration. Food Tech. 5:34
Piazza, L., and Masi, P. 1995. Moisture redistribution throughout the bread during staling and its effect on mechanical properties. Cereal Chem. 72(3): 320-325.
Ring, S. G., Colonna, P., I’Anson, K. J., Kalichevsky, M. T., Miles, M. J., Morris, V. J., and Orford, P. D. 1987. The gelation and crystallation of amylopectein. Carbohydr. Res. 162:227-293.
Robin, J. P., Mercier, C., Charbonniere, R., and Guilbot, A. 1974. Lintnerized starches. Gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem. 51: 389.
Roult, P., Maclnnes, W. M., Gumy, D., and Wursch, P. 1990. Retrogradation kinetics of eight starches. Starch/Starke 42: 99.
Russell, P. L. 1983. A kinetic study of bread staling by differential scanning. Starch/Starke 35(8): 277-281.
Russell, P. L. 1987. The ageing of gels from starches of different amylose/ amylopectein content studied by differential scanning calorimetry. J. Cereal Sci. 6(2): 147-158.
Rutenberg, M. W., and Solarek, D. 1984. Starch derivatives: Production and Use. In “ starch: Chemistry and Technology “.2nd. ed. Academic Press. Inc. Chapter 6.
Rutledge, J. E., Islam, M. N., and James, W. H. 1974. Improved canning stability of parboiled rice through cross-linking. Cereal Chem. 51(2): 46.
Schoch, T. J. 1964. Pages 106 in “ Methods in Carbohydrates Chemistry “. R. L. Whistler, ed. Academic Press: NY.
Sowbhagya, C. M. and Bhattarya, K. R. 1971. A sampleified colorimetric method determination of amylose content in rice. Starch/Starke 23(1): 53-56.
Sperling, L. H. 1992. Cross-linked polymers and rubber elasticity. In “ Introduction Physical Polymer Science “. Second edition, W. John, (ED), Inc., USA.
Spies, R. D., and Hoseney, R. C. 1982. Effect of sugars on starch gelatinization. Cereal Chem. 59(2): 128-131.
Teo, C. H., and Seow, C. C. 1992. A pulsed NMR method for the study of starch retrogradation. Starch/Starke 44(8): 288-292.
Test, R. F., and Morrison, W. R. 1990a. Swelling and gelatinization of cereal starches. Starch/Starke 27: 69-71.
Test, R. F., and Morrison, W. R. 1990b. Swelling and gelatinization of cereal starches. I. Effect of amylopectein, amylose, and lipids. Cereal Chem. 67: 551.
Vasanthan, T., and Bhatty, R. S. 1996. Physicochemical properties of small- and large-granule starches of waxy, regular, and high-amylose barleys. Cereal Chem. 73: 199-207.
Wada, K., Takahashi, K., Shirai, K., and Kawamura, A. 1979. Differential thermal analysis (DTA) applied to examining gelatinization of starches in foods. J. Food Sci. 44: 1366-1372.
Wang, Y. J., and Jane, J. 1994. Correlation between glass transition temperature and starch retrogradation in thepresence of sugars and maltodextrins. Cereal Chem. 71(6): 527-531.
Waniska, R. D., Gomez, M. H. 1992. Dispertion behavior of starch. Food Technol. June: 110-112, 117-118, 123.
Waniska, R. D., and Gomez, M. H. 1992. Dispertion behavior of starch. Food Technol. 7:110.
Ward, K. E. J., Hoseney, R. C., and Seib, P. A. 1994. Retrogradation of amylopectein from maize and wheat starches. Cereal Chem. 71(2): 155.
Whiatle, R. L., and Johnson, C. 1984. Effect of acid hydrolysis on the retrogradation of amylose. Cereal Chem. 61(5): 418-423.
Whistler, L. 1964. Method in carbohydrate chemistry IV. P.240-242., ED. Academic Press New York and London.
Winkler, V. S. 1960. Die bestimmung des phosphorsaurege-haltes der kart-offel starke auf komplexometri-schem und alkalimetrischem wege. Die starke. 2: 35.
Woo, K., and Seib, P. A. 1997. Cross-linking of wheat starch and hydroxypropylated wheat starch in alkaline slurry with sodium trimetaphosphate. Carbohydr. Polym. 33: 263-271.
Wu, T. and Seib, P. A. 1990. Acetylated and hydroxylated distarch phosphates from waxy bbarley: Paste properties and freeze-thaw stability. Cereal Chem. 67: 202-208.
Wu, J. Y., and Eads, T. M. 1993. Evolution of polymer mobility during ageing of gelatinized waxy maize starch: a magnetization transfer 1H NMR study. Carbohydr. Polym. 20(1): 51-60.
Wurzburg, O. B. 1986. Cross-linked starch. In “ Modified starch: Properties and Uses “, Vol. 2. ed by CRC Press, Inc. Boca Raton, Florida. P41-53.
Zeleznak, K. J., and Hoseney, R. C. 1986. The role of water in the retrogradation wheat starch gel and bread crumb. Cereal Chem. 63(5): 407-411, 418.
Zobel, H. F. 1988. Molecules to granules: a comprehensive starch revie. Starch/Starke 40(1): 44-50.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top