跳到主要內容

臺灣博碩士論文加值系統

(3.238.225.8) 您好!臺灣時間:2022/08/08 23:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱礸英
研究生(外文):Tsuan-ying Chu
論文名稱:富含g-胺基丁酸發芽糙米之研製
論文名稱(外文):A study on the preparation of germinated brown rice rich in g-aminobutyric acid
指導教授:李益榮李益榮引用關係
指導教授(外文):Yi-iong Lee
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系碩士班
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2000
畢業學年度:90
語文別:中文
論文頁數:116
中文關鍵詞:g-胺基丁酸糙米光質游離胺基酸發芽
外文關鍵詞:g-aminobutyric acidbrown ricelight qualityfree amino acidgermination
相關次數:
  • 被引用被引用:28
  • 點閱點閱:1067
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:7
本實驗以七種稉稻及三種秈稻共十種一期稻之良質糙米為材料,進行具g-胺基丁酸富化潛力品種選拔試驗。選種試驗係將各品種糙米各5g浸於含30mL經超音波處理自來水之燒杯中,於25℃、RH95﹪之黑暗條件下,分別催芽0、12、18、24與36小時,觀察其發芽情況及分析g-胺基丁酸與植酸含量。發現稉稻之發芽比率均遠高於秈稻,經催芽36小時者,無論稉、秈稻其芽長均超過1mm。各品種於不同催芽時間之g-胺基丁酸含量,則以24小時催芽處理之台稉X號與台中秈Y號含量最高,其含量分別由每100克原料米乾物重的7.75與6.50mg,增加為17.64與16.94mg。在植酸方面,各品種均未因催芽處理而降低其含量。基於稉稻口感優於秈稻,較適合直接食用之考慮,本實驗選擇台稉X號為g-胺基丁酸富化實驗之原料米。
g-胺基丁酸富化試驗之進行,經實驗證實台稉X號一期與二期稻榖,於發芽過程中g-胺基丁酸蓄積具相同趨勢,因考慮實驗期間太長,將影響糙米發芽力,故採用台稉X號較新鮮之二期稻榖為原料米。富化處理依序分成三階段進行,觀察糙米g-胺基丁酸含量變化與實驗因子之關係,第一階段以不同光質與時間交叉處理進行實驗,發現在紅光光照下,發芽24小時,其g-胺基丁酸含量由11.21增至19.12 mg/100g brown rice d.b.,即較原料米增加70.49﹪。第二階段則以紅光光照及24小時為參考時間,採化學富化法,以溶液pH、麩胺酸濃度及催芽時間為因子,用反應曲面法進行實驗,發現上述三者對g-胺基丁酸蓄積皆無明顯作用。最後再經超音波處理,其含量雖有提昇,但因部分g-胺基丁酸溶於水中,其米中含量較第一階段者略為降低。以上述三階段最佳條件所得發芽糙米用真空乾燥與遠紅外線熱風乾燥兩種處理,將所得兩種乾燥發芽糙米與原料糙米之米飯進行感官品評,發現三者在整體喜好性上並無顯著差異。
The samples of brown rice of the first crop season of seven japonica and three indica varieties, which supplied by Taichung District Agricultural Experiment Station, were examined for its g-aminobutyric acid (GABA)-enriching capacity during germination. The germination process carried out under 25℃, RH95% and dark condition in a growth chamber. Brown rice weighted about 5g of each variety were soaked in 30ml of ultrasound-treated tap water in a beaker and then germinated for 0, 12, 18, 24 and 36 hours to observe its sprouting and to determine its GABA and phytic acid content. The germination percentage of brown rice of japonica varieties generally showed a higher value than that of brown rice of indica varieties. While germinated for 36 hours, the length of sprout of brown rice of all the ten varieties were too long, i.e. 1mm or longer, to handle in hot air drying. Brown rice of Taikeng-X and Taichungsen-Y, germinated for 24 hours, had the highest GABA content among the ten varieties during the germination periods. The GABA content of germinated brown rice of the two varieties was 17.641 and 16.943mg/100g brown rice d.b. exhibited two to about three times rise compared to the original GABA content of 7.745 and 6.496 mg/100g brown rice d.b., respectively. While the content of phytic acid of brown rice of all the ten varieties showed no reduction during germination process. The Taikeng-X brown rice was selected for GABA-enriching experiment due to its high potential in GABA-enriching capacity and good eating quality.
Considering the GABA-enriching experiments was time-consuming and would cause the loss of sprouting ability of the brown rice of the first crop season, so the brown rice of the second crop season of Taikeng-X variety was, after the same characteristics in GABA-enriching was confirmed between brown rice of the first and second crop, selected for GABA-enriching investigation. Taikeng-X brown rice of the second crop season was undergone treatments of three stages sequentially for GABA-enriching. Different light qualities , at the first stage, crossed with three germination times, 12, 18 and 24 hours, for brown rice to enrich its GABA content. The data showed a rise of GABA content from original 11.21 to the peak value of 19.12mg/100g brown rice d.b., i.e. a 70.49﹪ rise in GABA content of brown rice gained under red light-24hr treatment at the first GABA-enriching stage. At the second stage, based on the red light-24hr treatment condition, three factors, pH of soaking water, concentration of glutamic acid and germination time, were used in central composite design which was taken to investigate the effect on GABA-enriching of brown rice, but, all the treatments, at this stage, only resulted in no significant effect on the accumulation in GABA content of germinated brown rice. At the last stage, ultrasound was taken to treat the brown rice treated previously by red light-24hr at the first stage. The result showed that there was no significant effect on the accumulation in GABA content for the sake of the dissolution of GABA into water due to ultrasound treatment. The brown rice, got form red light-24hr,then, dried in vacuum or by hot air combined with far infrared, and a preference panel test was carried out on the raw and two kinds of dried germinated brown rice, there was no significant difference found in preference among the three kinds of rice.
目 錄
中文摘要………………………………………………………………Ⅰ英文摘要……………………………………………………..…………Ⅲ
第一章 前言……………………………………………………..…….1
第二章 文獻回顧……………………………………………………...3
2.1 稻米背景資料……………………………………………………....3
2.1.1 稻米之品種與栽培史…………………………………………...3
2.1.2 稻榖之構造……………………………………………………...4
2.2 發芽……………………………………..…………………………..5
2.2.1 定義……………………………………………………………...5
2.2.2 發芽之條件……………………………………………………...7
2.2.3 發芽時物質之轉運……………………………………………...8
2.2.4 發芽與光線之關係……………………………………………..10
2.2.5 光質與發芽……………………………………………………..11
2.3 稻米之利用………………………………………………………...13
2.3.1 糙米的機能性成分…………………………………………..…..13
2.3.2 糠層之機能性成分……………………………………………..13
2.3.3 胚之機能性成分………………………………………………..15
2.3.4 榖芽之功用…………………………………………………..…15
2.4 g-胺基丁酸………………………………………………………….16
2.4.1 g-胺基丁酸之結構……………………………………………....16
2.4.2 g-胺基丁酸之機能性…………………………………………....16
2.4.3 g-胺基丁酸代謝路徑…………………………………………....17
2.4.4 g-胺基丁酸之富化方法與素材………………………………....20
2.5 植酸………………………………………………………………...23
2.6 游離胺基酸………………………………………………………...25
第三章 材料與方法………………………………………………..…27
3.1 實驗架構…………………………………………………………...27
3.2 選種實驗…………………………………………………………...29
3.2.1 原料……………………………………………………………..29
3.2.2 催芽方法…………………………………………………….….29
3.2.3 具g-胺基丁酸富化潛力稻種之選取…………………………...30
3.2.4 g-胺基丁酸與游離胺基酸之分析………………………………30
3.2.5 糙米發芽率與芽長之觀察……………………………………..38
3.2.6 植酸含量之測定………………………………………….……39
3.3 g-胺基丁酸富化實驗……………………………………………….41
3.3.1 原料……………………………………………………………..41
3.3.2 不同光質富化g-胺基丁酸實驗………………………………...41
3.3.3 化學方法富化糙米g-胺基丁酸含量實驗與設計…………..….45
3.4 發芽糙米富化g-胺基丁酸實驗中之其他測定與觀察……………47
3.4.1 水中溶氧量之測定……………………………………………..47
3.4.2 發芽糙米之外觀觀察…………………………………………..48
3.4.3 發芽糙米乾物重流失之測定…………………………………..48
3.4.4 發芽糙米澱粉分解酵素活性之測定…………………………..48
3.4.5 發芽糙米還原糖與非還原糖含量測定………………………..49
3.4.6 發芽糙米米飯之感官品評…………………………………......51
3.5 統計分析…………………………………………………………...52
第四章 結果與討論…………………………………………………..54
4.1 選種實驗…………………………………………………………...54
4.1.1 各品種糙米g-胺基丁酸含量於催芽過程之變化……………...54
4.1.2 各品種糙米植酸含量於催芽過程之變化……….....………….57
4.1.3 各品種糙米於催芽過程之發芽率觀察…………………….….59
4.1.4 具g-胺基丁酸富化潛力稻種之選取……… …………………..59
4.2 台稉X號一期稻與二期稻之g-胺基丁酸蓄積趨勢………………61
4.3 g-胺基丁酸富化實驗……………………………………………….66
4.3.1 不同光質與時間交叉處理對g-胺基丁酸富化之效果… ..66
4.3.2 照度或光質影響糙米g-胺基丁酸蓄積之確認………………...81
4.3.3 化學方法富化g-胺基丁酸實驗………………………………...83
4.3.4 超音波富化g-基丁酸蓄積之影響.........................86
4.4 發芽糙米富化g-胺基丁酸實驗中之其他特性與觀察…………....94
4.4.1 發芽糙米之外觀………………………………………………..94
4.4.2 發芽糙米乾物重流失之情形…………………………………..98
4.4.3 發芽糙米澱粉酵素活性測定之結果…………………………..98
4.4.4 重要製程點發芽糙米游離胺基酸含量特性比較…………....101
4.4.5富含g-胺基丁酸發芽糙米米飯之感官品評…………………..104
第五章 結論………………………………………………………....107
第六章 參考文獻……………………………………………………109
圖 次
圖一、稻榖之米粒構造圖………………………………………………..6
圖二、g-胺基丁酸之代謝路徑………………………………………….19
圖三、胺基酸與衍生化試劑(AQC)之衍生化反應……………………33
圖四、HPLC分析之胺基酸圖譜…………………………………….…34
圖五、HPLC分析之內標準標準曲線圖………………………………35
圖六、植酸之標準曲線圖……………………………………………...40
圖七、g-胺基丁酸富化實驗所用不同光質之波長分佈…..42
圖八、台稉X號一期稻與二期稻糙米浸水催芽處理g-胺基丁酸
蓄積之變化趨勢……….……….………...………...………..…63
圖九、不同催芽時間台稉X號一期稻與二期稻之游離胺基酸
主成分位置分佈圖……………….…………...………………..64
圖十、不同催芽時間台稉X號一期稻與二期稻之樣本
主成分得分分佈圖………………………………………...…...65
圖十一、不同光質對台稉X號糙米g-胺基丁酸富化操作之
效應………………………..………………...………………..74
圖十二、不同光質與時間交叉實驗之游離胺基酸
主成分位置分佈圖.…………………………………………..79
圖十三、不同光質與時間交叉實驗之樣本
主成分得分分佈圖……………………………………..…....80
圖十四、黑暗條件下不同催芽時間糙米之外觀…………….………..95
圖十八、紅光光照條件下不同催芽時間糙米之外觀……….……..96
圖十九、富含g-胺基丁酸發芽糙米產品與原料糙米之外觀比較…….97
圖二十、台稉X號糙米催芽過程中之乾物重流失情形….….……….99
圖二十一、台稉X號糙米催芽過程中之澱粉酵素活性與
發芽率變化………………………………………………100
圖二十二、台稉X號糙米於富化g-胺基丁酸過程重要製程點
其游離胺基酸含量之變化………………………………102
表 次
表一、HPLC分析之移動相梯度混合比例…………………………….37
表二、台稉X號糙米富化g-胺基丁酸操作過程中,兩種光質
配合三種催芽時間之交叉實驗設計…….…….43
表三、以中心複合反應曲面設計進行台稉X號糙米浸種之
g-胺基丁酸富化實驗組合..……………...………….…………45
表四、十種良質糙米於不同催芽時間g-胺基丁酸含量之變化……...55
表五、十種良質糙米於不同催芽時間植酸含量之變化……………..58
表六、十種良質糙米於不同催芽時間之發芽率變化…………..….…60
表七、台稉X號糙米富化g-胺基丁酸操作過程中,兩種光質
配合三種催芽時間交叉處理之實驗結果..……67
表八、兩種光質配合三種催芽時間交叉富化台稉X號
糙米之g-胺基丁酸含量實驗之模式分析…...68
表九、兩種光質配合三種催芽時間交叉富化
台稉X號糙米之g-胺基丁酸含量實驗回歸模式之欠合性分析………………………………………..69
表十、兩種光質配合三種催芽時間交叉處理富化
台稉X號糙米g-胺基丁酸含量實驗結果之變方分析………...70
表十一、g-胺基丁酸蓄積量與各因素間之方程式…………..……….71
表十二、兩種光質配合三種催芽時間交叉處理實驗
台稉X號發芽率之變方分析………………………………..71
表十三、發芽率與催芽時間間之方程式……………………………..72
表十四、統計分析求得g-胺基丁酸富化操作過程中,兩種光質
配合三種催芽時間交叉處理之最佳條件…..72
表十五、不同光質處理發芽糙米各游離胺基酸間之相關係數矩陣...76
表十六、不同光質交錯使用對台稉X號糙米
g-胺基丁酸蓄積之影響…………………………………..…..77
表十七、光質與照度對g-胺基丁酸蓄積之影響……………………….82
表十八、以反應曲面法進行台稉X號糙米g-胺基丁酸蓄積之
實驗結果………………………………………..…………….84
表十九、以反應曲面法進行台稉X號糙米g-胺基丁酸蓄積之
變方分析………………...…………………………………...85
表二十、化學富化法中g-胺基丁酸含量與麩胺酸濃度、pH與
催芽時間之迴歸方程式……………………………………..85
表二十一、超音波處理對g-胺基丁酸蓄積之影響………………………………………………………..87
表二十二、富含g-胺基丁酸台稉X號發芽糙米米飯之
感官品評結果……………………………………………106
宋勳、洪梅珠、許愛娜 (1991) 台灣稻米品質研究。台中區農業改良場特刊24號。
汪呈因編著 (1983) 稻作學與米。徐氏基金會出版。台灣台北。
李平篤、李門輝 (1993) 水稻種子發芽發育過程中醣代謝相關酵素活性之變化。 中國農業化學會誌 31(2): 265-273。
李義召、韓丹春、遲兆富、郭洪志、張世貴 (1998) 谷維素注射液與片劑治療自主神經功能紊亂之比較。中國新藥與臨床雜誌 17(1): 15-16。
高景輝、湯文通 (1977a) 光敏素。科學農業 25(3/4): 100-102。
高景輝、湯文通 (1977b) 種子的生理。科學農業 25(5/6): 165-169。
高景輝 (1982) 藍光與莖之生長。科學農業 30(11/12): 430-432。
凌健斌、鄭建仙 (2000) 谷維素及其在功能性食品中的應用。糧食與飼料工業 5: 35-37。
許愛娜 (1994) 稻米品質理化性質之研究。國立中興大學農藝學研究所博士論文。
張正賢譯著 (1988) 稻作學精要。國立編譯館主編。茂昌圖書有限公司發行。台灣台北。
陳正行、姚惠源 (2001) 米糠健康食品的研究。無錫輕工大學學報 20(2): 202-204, 222。
陳正行、周彤 (1999) 米糠:一種潛在的健康優質原料。糧食與飼料工業 10: 40-43。
傅偉祥 (2001) 利用米糠開發含營養及具機能性之食品配料。國立台灣大學食品科技研究所博士論文。
曹國鋒、龔任、王舒平、劉紅天 (2000) 米糠資源開發利用的研究。糧食與飼料工業 7: 42-44。
賴光隆著 (1992) 糧食作物。黎明文化。台灣台北。
龔院生、姚惠源 (2000) 米糠中活性因子g-谷維醇降血之功能研究。糧食與飼料工業 8: 37-39。
龔院生、姚惠源 (2000) 米糠中g-谷維醇抗脂質氧化作用。糧食與飼料工業 11: 40-41。
謝邦昌 (1998) 多變量分析(一)-主成份分析。中國統計通訊 9(7): 28-32。
謝明村等編著 (1997) 中國藥材學。國立編譯館主編 中國醫藥學院協編 正中書局印行。台灣台北。p.484-485。
三輪佳行、森久隆 (2002) 分岐鎖アミノ酸の臨床應用。臨床營養 100(2): 180-185。
三枝貴代、岡田忠司、村井弘道、森 隆、堀野俊郎、大森正司、伊藤昌博、小野田明彥 (2001) コメ胚芽中の4-アミノ酪酸 (GABA) 蓄積に及ぼす有機溶媒脫脂の影響。日本食品科學工學会誌48(3): 196-201。
大久長範、菅原真理、阿部雪子、熊谷昌則、高橋砂織 (2000) 胚芽米と鶏スープよるγ-アミノ酪酸の生成。日本食品科學工學会誌47(6): 54-56。
矢ヶ崎一三 (2002) アミノ酸とくに非必須アミノ酸の藥理作用。臨床營養 100(2): 161-166。
辻啟介、市川富夫、田边伸和、小沺裕士、阿部士郎、樽井庄一、中川靖枝 (1992) 小麦紅麴からの血压降下成分の抽出。日本食品科學工學会誌 39(10): 913-919。
杉下 朋子 (2001) コメ胚芽由來GABA素材の開發。食品と開發36(6): 10-11。
岸 恭一、二川 健、六反一仁 (2002) アミノ酸の生理作用-とにシステイン。臨床營養 100(2): 150-154。
岡田 忠司 (2001) GABA富化コメ胚芽の生理機能。食品と開發36(6): 7-9。
岡田忠司、杉下朋子、村上太郎、村井弘道、三枝貴代、堀野俊郎、小野田明彥、梶本修身、高橋 飭、高橋丈夫 (2000) g-アミノ酪酸蓄積脫脂コメ胚芽の经口投与における更年期障害及び初老期精神障害に对する效果。日本食品科学工学会誌47(8): 596-603。
杵淵美倭子、關谷美由紀、山崎 彬、山元皓二 (1999) 高压处理利用した玄米中への g-アミノ酪酸(GABA)の蓄積。日本食品科學工學会誌46(5): 323-328。
茅原 紘、杉浦 友美 (2001) 近年のGABA生理機能研究:腦機能改善作用、高血壓作用を中心に。食品と開發36(6): 4-6。
食品と開發雜誌編集部 (2001) 注目されるGABA富化素材の開發。食品と開發36(6): 17-18。
津志田藤二郎、村井敏信、大森正司、岡本順子 (1987) g-アミノ酪酸を蓄積させた茶の製造とその特徵。日本農化66(7): 817-822。
鳥居邦夫、木村 毅 (2002) グルタミン酸の生理作用。臨床營養 100(2): 167-174。
薩 秀夫、清水 誠 (2002) アミノ酸トランスポーター。臨床營養 100(2): 155-160。
澤田祐典、許斐健一、小高保喜、吉富 均、山口優一、深山大介 (1999a) 嫌氣处理した茶葉の茎におけるγ-アミノ酪酸含量。日本食品科學工學会誌46(4): 274-277。
澤田祐典、許斐健一、小高保喜、吉富 均、山口優一、深山大介、竹內敦子 (1999b)嫌氣-好氣交互处理による茶葉γ-アミノ酪酸量の增加。日本食品科學工學会誌46(7): 462-466。
橫田哲治 (2001) 發芽玄米の時代がくる。食の科學 272(10): 34-37。
橫越英彥 (2002) アミノ酸營養と腦機能。臨床營養 100(2): 175-179。
Ahmad, R., Ahmad, S., and Baig, M. A. (1996) Enzymic studies of germinated cereal grains. Pak. J. Sci. Res. 48(3-4): 71-73.
Aurisano, N., Bertani, A., and Reggiani, R. (1995a) Involvement of calcium and calmodulin in protein and amino acid metabolism in rice roots under anoxia. Plant Cell Physiol. 36(8): 1525-1529.
Aurisano, N., Bertani, A., and Reggiani, R. (1995b) Anaerobic accumulation of 4-aminobutyrate in rice seedlings; causes and significance. Phytochemistry 38(5): 1147-1150.
Bautista, G. M., Lugay, J. C., Cauz, L. J., and Juliano, B. O. (1964) Glutamic acid decarboxylase activity as a viability index of artificially dried and stored rice. Cereal Chem. 41: 188-191.
Bown, A. W., and Shelp, B. J. (1997) The metabolism and functions of g-aminobutyric acid. Plant Physiol. 115: 1-5.
Bukhov, N. G., Drozdova, I. S., and Bondar, V. V. (1995) Light response curves of photosynthesis in leaves of sun-type and shade-type plants grown in blue or red light. J. Photochem. Photobiol., B Biol. 30: 39-41.
Centeno, C., Viveros, A., Brenes, A., Canales, R., Lozano, A., and Cuadra, C. (2001) Effect of several germination conditions on total P, phytate P, phytase, and acid phosphatase activities and inositol phosphate esters in rye and barley. J. Agric. Food Chem. 49: 3208-3215.
Cholewa, E., Cholewinski, A. J., Shelp, B. J., Snedden, W. A., and Bown, A. W. (1997) Cold-shock-stimulated g-aminobutyric acid syntesis is mediated by an increase Ca2+, not by an increase in cytosolic H+. Can. J. Bot. 75: 375-382.
Corbineau, F., Rudnicki, R. M., Goszczyzska, D. M., and Come, D. (1995) The effect of light quality on ethylene production in leaves of oat seedlings (Avena sativa L.) Enviro. Exp. Bot. 35(2): 227-233.
Crawford, L. A., Bown, A.W., Breitkreuz, K. E., and Guinel, F. C. (1994) The synthesis of g-aminobutyric acid in response to treatments reducing cytosolic pH. Plant Physiol. 104: 865-871.
Das S. K., and Ray P. K. (1996) Ontogeny of GABA pathway in human fetal brains. Biochem. Biophys. Res. Commun. 228: 544-548.
Harland, B. F. and Morris, E. R. (1995) Phytate: a good or a bad food component? Nutr. Res. 15(5): 733-754.
Haug, W., and Lantzsch, H. J. (1983) Sensitive method for the rapid determination of phytate in cereal products. J. Sci. Food Agric. 34: 1423-1426.
Jones, R. S., and Mitchell, C. A. (1989) Calcium ion involvement in growth inhibition of mechanically stressed soybean (Glycine max) seedlings. Physiol. Plant. 76: 598-602.
Juliano, B. O. (1992) Structure, chemistry, and function of rice grain and its fractions. Cereal Foods World 37(10): 772-779.
Juliano, B. O. (1985) Ed. Rice: Chemistry and technology, 2nd ed. American association of cereal chemists, St. Paul, MN.
Kikunaga, S., Katoh, Y., and Takahashi, M. (1991) Biochemical change in phosphorus compounds and in the activity of phytase and a-amylase in the rice (Oryza sativa) grain during germination. J. Sci. Food Agric. 56: 335-343.
Li, S., and Pan, R. (1995) Effect of blue light on the metabolism of carbohydrate and protein in rice (Oryza sativa L.) seedlings. Acta Phytophysiol Sin. 21(1): 22-28.
Loewus, F. A., and Murthy, P. P. N. (2000) myo-Inositol metabolism in plant. Plant Sci. 150: 1-19.
Lorenz, K. (1980) Cereal sprouts: composition, nutritive value, food applications. Crit. Rev. Food Sci. Nutr. 12: 353-385.
Marero, L. M., Payumo, E. M., Aguinaldo, A. R., Matsumoto, I., and Homma, S. (1991) Antinutritional factors in weaning foods prepared from germinated cereals and legumes. Lebensm. Wiss. U. Technol. 24: 177-181.
Mayer, R. R., Cherry, J. H., and Rhodes, D. (1990) Effects of heat shock on amino acid metabolism of cowpea cells. Plant Physiol. 94: 796-810.
Mbithi-Mwikya, S., Camp, J. V., and Huyghebaert, A. (2000) Nutrient and antinutrient changes in finger millet (Eleusine coracan) during sprouting. Lebensm. Wiss. U. Technol. 33: 9-14.
Myers, R. H. (1971) Response surface methodology. Allyn and Bacon, Inc., Bastton, Massachusetts. USA.
Official Methods of Analysis of AOAC International, 15th Edn. (1990) Methods 925.10, 932.04, 939.03, Arlington, Virginia, U.S.A.: AOAC International.
Orthoefer, F. T. (1996) Rice bran oil: healthy lipid source. Food Technol. 50(12): 62-64.
Oyaert, E., Volckaert, E., and Debergh, P. C. (1999) Growth of chrysanthemum under coloured plastic films with different light qualities and quantities. Sci. Hortic. 79: 195-205.
Qureshi, A. A., Bradlow, B. A., Salaaer, W. A., and Brace, L. D. (1997) Novel tocotrienols of rice bran modulate cardiovascular disease risk parameters of hypercholesterolemic humans. J. Nutr. Biochem. 8: 290-298.
Ramputh, A. I., and Bown, A. W. (1996) Rapid g-aminobutyric acid synthesis and the inhibition of the growth and development of oblique-banded leaf-roller larvae. Plant Physiol. 111: 1349-1352.
Reggiani, R., Cantu, A. C., Brambilla, I., and Bertani, A. (1988) Accumulation and interconversion of amino acids in rice roots under anoxia. Plant Cell Physiol. 29(6): 981-987.
Saikia, P., Sarkar, C. R., and Borua, I. (1999) Chemical composition, antinutritional factors and effect of cooking on nutritional quality of rice bean [Vigna umbellate (Thunb; Ohwi and Ohashi)]. Food Chem. 67: 347-352.
Saikusa, T., Horino, T., and Mori, Y. (1994a) Accumulation of g-aminobutyric acid(Gaba)in the rice germ during water soaking. Biosci. Biotechnol. Biochem. 58(12): 2291-2292.
Saikusa, T., Horino, T., and Mori, Y. (1994b) Distribution of free amino acids in the rice kernel and kernel fractions and the effect of water soaking on the distribution. J. Agric. Food Chem. 42: 1122-1125.
Sandberg, A. S., and Svanberg, U. (1991) Phytate hydrolysis by phytase in cereals; effects on in vitro estimation of iron availability. J. Food Sci. 56(5): 1330-1333.
Satyanarayan, V., and Nair, P. M. (1990) Metabolism, enzymology and possible roles of 4-aminobutyrate in hugher plants. Phytochem. 29: 367-375.
Serraj, R., Shelp, B. J., and Sinclair, T. R. (1998) Accumulation of g-aminobutyric acid in nodulated soybean in response to drought stress. Physiol. Plant. 102: 79-86.
Shelp B. J., Bown A. W., and Mclean M.D. (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 4(11): 446-452.
Slavin, J. L., and Lampe, J. W. (1992) Health benefits of rice bran in human nutrition. Cereal Foods World 37(10): 760-763.
Streeter, J. G., and Thompson, J. F. (1972) Anaerobic Accumulation of g-aminobutyric acid and alanine in radish leaves (Raphanus sativus L.). Plant Physiol. 49: 572-578.
Toma, R. B., and Tabekhia, M. M. (1979) Changes in mineral elements and phytic a cid contents during cooking of 3 California rice varieties. J. Food Sci. 44: 619-621.
Toole, V. K. (1973) Effects of light, temperature and their interactions on the germination of seeds. Seed Sci. and Technol. 1: 339-396.
Wallace, W., Secor, J., and Schrader, L. (1984) Rapid accumulation of g-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness, or mechanical manipulation. Plant Physiol. 75: 170-175.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top