跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 21:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李志王民
研究生(外文):Tsu-Ming Lee
論文名稱:光對櫸木種子發芽及苗木生長、形質及生理特性的效應
論文名稱(外文):Effects of Light on Seed Germination and Seedling Growth, Morphology, Quality, and Physiological Characteristics of Taiwan Zelkova (Zelkova serrata (Thunb.) Makino)
指導教授:李明仁李明仁引用關係
指導教授(外文):Ming-Jen Lee
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:林業研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:82
中文關鍵詞:光質R/FR值光度光補償點光飽和點
外文關鍵詞:light qualityR/FR valuelight intensitylight compensation pointslight saturation point
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1452
  • 評分評分:
  • 下載下載:120
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討不同光質處理對櫸木種子發芽及幼苗生長之影響,及不同光度處理對苗木生長與生理特性之效應。
研究結果顯示,櫸木種子發芽及幼苗生長因不同光波波長處理而有所差異,以橙紅光較佳,惟各光域處理間之差異不顯著。櫸木谷關種子組之發芽率以紅+黃色玻璃紙包覆處理者較高,平均為43.33±3.55﹪,而幼苗的生長以黃色玻璃紙覆蓋者較佳,平均苗高及苗徑分別為24.6±3.69㎝、2.39±0.42㎜;櫸木復興鄉種子組之發芽率以黃色玻璃紙包覆處理者較高,平均為43.17±3.21﹪,而苗高生長以黃色玻璃紙覆蓋者較佳,平均值為37.95±23.26㎝,而苗徑生長以對照組者較佳,平均值為3.14±0.95㎜。
九個月光度處理試驗結果顯示,櫸木谷關種子組之苗木以相對光度56﹪者生長較佳,苗高平均值為42.68±4.34㎝、苗徑平均值為3.20±0.41㎜;枝幹分叉數以全光者較多,平均為0.65±0.15支/株,相對光度44﹪者較少,平均為0.28±0.11支/株;分叉長度以全光者較長,平均為15.84±2.55㎝,相對光度44﹪者較短,平均為8.37±3.25㎝。櫸木復興鄉種子組苗木之苗高生長以相對光度33﹪者較佳,平均為43.8±5.16㎝,苗徑生長以全光者較佳,平均為3.17±0.48㎜;枝幹分叉數以全光者較多,平均為0.67±0.14支/株,相對光度56﹪者較少,平均為0.24±0.11支/株;分叉長度以全光者較長,平均為13.66±3.21㎝,相對光度44﹪者較短,平均為6.25±3.44㎝。櫸木苗木枝叉幹分出之方向以東、西向較多,枝叉數以全光時較多;高光度時枝叉幹分出方向散佈各個方位,低光度枝叉幹則東西向較多。根、莖部乾重及生物量分配以全光及相對光度56﹪者較多,葉部乾重以相對光度56﹪及33﹪者較多。S/R值以相對光度44﹪及33﹪較高,Dickson指數以全光及相對光度56﹪者較高,相對苗高及纖弱指數以全光及相對光度56﹪者較小。光度對葉片形質之影響於第一次處理(遮蔭6個月時)時即已顯現,與第二次結果(遮蔭9個月時)之趨勢亦一致,谷關種子組櫸木苗木以相對光度26﹪葉面積較大,平均為201.11cm2/株,全光者較小,平均為82.32 cm2/株,葉片數以全光者較多,平均為98.37片/株,相對光度33﹪者較少,平均為48.7片/株。復興鄉種子組櫸木苗木以相對光度33﹪者葉面積較大,平均為209.97 cm2/株,全光者較小,平均為102.44 cm2/株,葉片數以全光者較多,平均為93.15片/株,相對光度44﹪者較少,平均為39.52片/株。
櫸木光補償點與光度處理呈正相關,以全光處理者之光補償點較高約為13~15μmol photon m-2s-1,其光飽和點約為1500μmol photon m-2s-1,最大淨光合速率以全光處理者較大,谷關種子組櫸木者平均為10.44±1.44μmol CO2 m-2s-1;復興鄉種子組櫸木者平均為9.69±1.44μmol CO2 m-2s-1。葉綠素a、b及葉綠素a+b濃度隨光度增加而降低,葉綠素a/b比值介於2~3之間平均為2.33±0.04。以高光度處理之葉片較厚,柵狀組織細長且密實,海綿組織較多,氣孔室呈扁長形。以低光度處理之葉片較薄,柵狀組織粗短,海綿組織較少且空隙大,氣孔室呈橢圓形,而氣孔數則隨相對光度之增加而增加。
The objectives of this study were to examine the effects of light quality on the germination and seedling growth of Taiwan zelkova (Zelkova serrata (Thunb.) Makino), and the effects of different light treatment on seedling growth and physiological characteristics.
Results of the study showed that different light spectra had different effects on seed germination and seedling growth of Taiwan zelkova. After 1 month of germination test and 4 month of seedling growth experiment, the results revealed that orange light had better effect than the others, but the differences were not statistically significant. For seeds and seedlings of Guguan seed lot, seeds receiving orange light had highest germination percentage averaged 43.33±3.55%, and seedlings receiving yellow light had highest height growth averaged 24.6±3.69cm, and diameter growth averaged 2.39±0.42㎜. For seeds and seedlings of Fuxing County seed lot, seeds receiving yellow light had highest germination percentage averaged 43.17±3.21%, and seedlings receiving yellow light had highest height growth averaged 24.6±3.69cm, but those receiving full sun light had highest diameter growth averaged 3.14±0.95㎜.
Results of light intensity experiment revealed that seedlings from Guguan seed lot had highest height growth average 42.68±4.34cm and diameter growth average 3.20±0.41㎜ at 56% relative light intensity. Seedlings receiving full light intensity had more branches in average, i.e., 0.65±0.15 branches/seedling, but at 44% relative light intensity, the average number of branches decreased to 0.28±0.11 branches/seedling. Branches had longest length average 15.84±2.55cm at full light intensity, and had shortest length 8.37±3.25cm at 44% relative light intensity. Seedlings of Fuxing County seed lot had highest height growth of 43.8±5.16cm at 33% relative light intensity, and highest diameter growth of 3.17±0.48㎜ at full light intensity. It also had more branches, i.e., average 0.67±0.14 branches/seedling at full light intensity, and fewer, i.e., 0.24±0.11 branches/seedling in average at 56% relative light intensity. Branch length was also longer, i.e., 13.66±3.21cm in average at full light intensity, and shorter, i.e., 6.25±3.44㎝ in average at 44% relative light intensity. Most of the branches oriented toward east or west, and there were more branches at full light intensity. At high light intensities, branches generally scattered in all directions, but at lower light intensities, branches shifted to east and west. For dry weight and biomass distribution, the proportions of roots and stems were higher at 100% and 56% relative light intensity. Leaf dry weight was higher at 56% and 33% relative light intensity, and leaf biomass increased as light intensity increased. The S/R values were higher at 44% and 33% relative light intensity. Values of Dickson index were higher at 100% and 56% relative light intensity. The relative tree height and slenderness were also smaller at 100% and 56% relative light intensity. The effects of light intensity on leaf shapes appeared after 6 months of shading treatment, and the effects remained unchanged after 9 months of shading period. For seedlings from Guguan seed lot, the leaf areas were larger at 26% relative light intensity 201.11cm2/seedling in average, and smaller at full light intensity, i.e., 82.32 cm2/seedling in average. The numbers of leaves were more at full light intensity, i.e., 98.37 leaves/seedling, and less at 33% relative light intensity, i.e., 48.7 leaves/seedling. For seedlings of Fuxing County seed lot, the leaf areas were larger at 33% relative light intensity, i.e., 209.97cm2/seedling in average, and smallest at full light intensity, i.e., 102.44 cm2/seedling in average. The numbers of leaves were also more at full light intensity, i.e., 93.15 leaves/seedling, and less at 44% relative light intensity, i.e., 39.52 leaves/seedling.
The light compensation points of Taiwan zelkova was positively correlated with shading treatment, it increased as light intensity increased, and reached its higher value at 13~15μmol photon m-2s-1, with a light saturation point of 1500μmol photon m-2s-1 at full light intensity. The maximum photosynthetic rate occurred at full light intensity, i.e., 10.44±1.44μmol CO2 m-2s-1 for seedlings of Guguan seed lot, and 9.69±1.44μmol CO2 m-2s-1 for seedlings of Fuxing Country seed lot. The concentrations of chlorophyll a, chlorophyll b and chlorophyll a+b decreased as light intensity increased. The chlorophyll a/b ratios ranged from 2 to 3 with a mean of 2.33±0.04. At higher light intensities, leaves appeared to be thicker, and were filled with slender but compact palisade tissues and more spongy tissues. The shape of stoma was flat and elongated, with a narrow aperture between guard cells. In contrast, leaves were generally thinner at lower light intensity. The palisade tissues appeared to be shorter, and spongy tissues appeared to be fewer and sparsely aligned. The stoma was ecliptic in shape, with a wider aperture. The numbers of stomata, increased as the light intensity increased.
中文摘要…………………………………………….………………….Ⅰ
英文摘要………………………………………….…………………….Ⅲ
目次……………………………………………….…………………….Ⅵ
表目次…………………………………………….…………………….Ⅶ
圖目次…………………………………….…………………………….Ⅷ
壹、緒言………………………………………………………………… 1
貳、前人研究…………………………………………………………… 4
一、光質對種子發芽及幼苗生長之影響……………………………. 4
二、光度對苗木生長形態之影響……………………………………. 7
參、材料及方法……..………………………………………………….21
一、光質試驗…..……………………………………………………..21
二、光度試驗..………………………………………………………..23
肆、結果.…………………………………………………….………….28
一、光質試驗…..……………………………………………………..28
二、光度試驗…..……………………………………………………..30
伍、討論………….…………………………………………….……….55
一、光質對於櫸木種子發芽及幼苗生長之影響……..……………..55
二、光度對於櫸木苗木生長形態及葉片形質之影響…………..….57
三、光度對於櫸木枝幹分叉之影響…….………………….………..61
四、光度對於櫸木苗木生長生理特性之影響…………..…………..64
五、光度對植物體內氮、磷、鉀、鈣和鎂養分濃度之影響…………..66
陸、結論…………………….…………………………………………..68
柒、引用文獻……………….…………………………………………...71
捌、附錄…………………….…………………………………………..80
王子定 (1974) 理論育林學(上)。國立編譯館。717頁。
王子定 (1974) 理論育林學(下)。國立編譯館。782頁。
王子定 (1981) 應用育林學(中)。正中書局。419頁。
王相華 (1995) 不同光度對四種季風與林樹種幼苗生長及形態之影響。林業試驗所研究報告季刊 10(4):405-418。
王智弘 (1997) 光度對春不老與潺槁木薑子苗木生長及生理反應之影響。國立中興大學研究報告。
王亞男、姜家華、詹明勳、林志謨 (1998) 影響紅檜造林木側枝形成分叉幹之研究。兩岸林木種原交流研討會。
方榮坤、廖天賜、沈慈安 (1987) 不同光度對於樟樹、楓香及桃花心木苗生長之影響。國立中興大學森林系研究報告208號。
方榮坤、林鴻忠、廖天賜 (1988) 不良天然林之林木栽植試驗。國立中興大學實驗林研究報告 9:17-22。
方榮坤、廖天賜、沈慈安 (1988) 杉木人工林之林下栽植試驗。國立中興大學實驗林研究報告 9:9-15。
方榮坤、邱陸陽、廖天賜、林鴻忠 (1990) 不同光度對於香杉、台灣杉苗木生長之影響。國立中興大學實驗林研究報告 12(1):89-106。
方榮坤、邱陸陽、廖天賜、林鴻忠 (1992) 不同光度對台灣原產三種柏科林木幼苗生物量之影響。國立中興大學實驗林研究報告 14(2):39-54。
朱德民 (1988) 植物的生長與發育。國立編譯館。pp436。
李明仁 (1997) 光質對台灣赤楊種子發芽之效應。嘉義農專學報52:15-24。
沈介文 (2000) 五種台灣原生闊葉樹種於不同光度下之生理生態特性。國立台灣大學碩士研究報告。
林天書、尹華文 (1991) 台灣櫸等十一種闊葉樹材抗家白蟻之研究。林試所研究報告季刊6(1):35-40。
林世宗、簡文村 (1997) 台灣紅豆杉之育林研究(二)不同光度對台灣紅豆杉苗木生長與形質之效應。台大實驗林研究報告 11(1):81-98。
林安秋 (1991) 作物之光合作用。台灣商務印書館211頁。
林信輝、劉坤樹 (1997) 福山試驗林十種闊葉樹種之光合成率、蒸散率及葉片厚度與氣象因子之關係。中華林學季刊30(3):269-278。
林虔隆、王義仲 (1997) 光對台灣櫸枝幹分叉性之影響研究。八十六年度農業綜合調整方案試驗研究報告 86科技-1 11-林-08 序號:12。
林務局(1994) 林務局各林區國有林直營造林地清查結果報告。
林添富 (1992) 光度對台灣櫸與毛柿苗木生長之影響。國立中興大學研究報告。
林渭訪、劉業經 (1947) 松類幼苗對於光之需要度試驗。林試所研究報告5。
邱陸陽 (1990) 不同光度對於五種針葉樹苗木生長之影響。國立中興大學森林系研究報告。
易希道 (1966) 植物生理學。正中書局出版。
姜家華、王亞男、張國楨、周泰平 (1994) 不同種源台灣櫸葉綠素含量與苗木生長關係之研究。中華林學季刊 27(3):23-28。
姚鶴年 (1994) 台灣林業之發展。中華林學叢書944號。中華林學會。
侯金日、楊雅斯、王淑敏 (1999) 不同光質對兩種鬼針屬(Bidens)植物種子發芽之影響。中華民國雜草學會會刊 20:39-54。
翁仁憲 (1994) 玻璃溫室微氣候對水耕蔬菜生育之影響。中華農業氣象1:35-39。
翁仁憲 (1996) 作物之光合、呼吸及蒸散作用與其環境適應性關係。中華農業氣象 3(1):1-7。
高 清 (1984) 林木之構造與功能。國立編譯館。pp454。
高景輝 (1989a) 植物生長與分化。國立編譯館。pp731。
高景輝 (1989b) 植物荷爾蒙。華香園出版社 pp586。
許福星 (1989) 光質及光照時間對芒草種子發芽之影響。畜產研所 22(1):21-33。
陳振東、張峻德 (1969) 台灣赤楊苗木分級及截幹之造林試驗。中華林學季刊 2(3):37-46。
陳舜英 (1997) 光度及氮肥對三斗石櫟苗木形質生長暨林地表現之影響。國立台灣大學研究報告。
張乃航 (1996) 光照效應對台灣赤楊、山黃麻及構樹種子發芽的影響。台灣林業科學11(2):195-199。
張安邦 (1997) 光度對大葉楠與香楠苗木生態生理反應之研究。國立中興大學研究報告。
郭幸榮、黃進輝 (1996) 烏心石苗木形態於不同光度下之變化。台大實驗林研究報告 10(1):49-65。
郭幸榮、黃進輝 (1998) 烏心石苗木在溫室內不同光度下之生長表現。台大實驗林研究報告 12(4):289-298。
郭幸榮、黃進輝 (1999) 烏心石苗木生長於溫室內不同光度下之生理特性。中華林學季刊 32(1):25-37。
郭寶章(1989) 育林學各論。國立編譯館主編。
郭耀綸 (1993) 六種固有景觀樹種之耐陰性研究。第八屆全國技術及職業教育研討會-農業類 pp1-10。
郭耀綸、吳祥鳴 (1997) 黃心柿、毛柿及大葉山欖苗木光合作用與形態對不同光量的可塑性。中華林學季刊 30(2):165-185。
黃進輝 (1994) 烏心石苗木在不同光度下形態暨生理反應。台灣大學森林學研究所碩士論文。
湯曜滋 (1999) 台灣中低海拔主要闊葉樹種之光合成與用水效率之研究。國立中興大學水土保持學系碩士論文。
楊玫玲 (2000) 三斗石櫟苗木對不同光度及磷肥之形態暨生理反應。國立台灣大學碩士研究報告。
廖天賜、方榮坤、林添富 (1995) 光度對台灣櫸及毛柿苗木型態生長之影響。中興大學實驗林研究會刊17(2):131-146。
鄭丕堯 (1992) 作物生理學導論。北京農業大學出版社。
趙惠德 (2000) 不同光度及施肥量對烏心石苗木形態及生理之影響。國立台灣大學碩士研究報告。
劉賢祥 (1987) 植物生理學。徐氏基金會出版。pp147-149。
劉英德 (1988) 種子生理。五洲出版社印行。
羅卓振南、鍾旭和、邱志明(1995)修枝對台灣櫸幼林生長及節癒合之研究。林業試驗所研究報告季刊。10(3):315-323。
Abrams, M. D., B. D. Kloeppel, and M. E. Kubiske (1992) Ecophysiological and morphological responses to shade and drought in two contrasting ecotypers of Prunnus serotina. Tree Physiol. 10:343-355.
Ashton, P. M. S. and G. P. Berlyn (1994) A comparison of leaf physiology and anatomy of Quercus (Section Erythrobalanus-Fagaceace) species in different light environments. Am. J. Bot. 81(5):589-597.
Ashton, P. M. S., H. S. Yoon, R. Thadani, and G. P. Berlyn (1999) Seedling leaf structure of New England maples (Acer) in relation to light environment. For. Sci. 45(4):512-519.
Billow, C., P. Matson, and B. Yoder (1994) Seasonal biochemical changes in coniferous forest canopies and their response to fertilization. Tree Physiol. 14:563-574.
Bliss, D., and H. Smith (1985) Penetration of light into soil and its role in the control of seed germination. Plant, Cell and Evironment 8:475-783.
Boardman, N. K. (1977) Comparative photosynthesis of sun and shade plant. Ann. Rev. Plant Physiol. 28:355-377.
Bormann, B. T. (1983) Ecological implications of phytochrome-mediated seed germination in red alder. For. Sci 29:734-738.
Borthwick, H. A. (1957) Light effects on tree growth and seed germination. Ohio J. Sci. 57:357-364.
Brand, M. H. (1997) Shade influences plant growth, leaf color, and chlorophyll condent of Kalmia latifolia L. cultivars. Hort Sci. 32(2):206-208.
Carlson, W. C. and D. E. Miller (1990) Target Seedling root system size, hydraulic conductivity, and water use during seedling establishment. In: Target Seedling System (Rose, R., S. J. Campbell, and T. D. Landis, (eds)), pp 53-66. Gen. Tech. Rep. RM-200.
Cannel, M. G. R. and J. Grac (1993) Competition for light: Detection, measurement and quantifiction. Can. J. For. Res. 23:1969-1979.
Carpenter, S. B. and N. D. Smith (1975) Stomatal distribution and size in southern Appalachian hardwoods. Can.J.Bot.53:1153-1156.
Cregg, B. M., R. O. Teskey, and P. M. Dougherty (1993) Effect of shade stress on growth, morphology, and carbon dynamics of loblolly pine branches. Trees 7:208-213.
Evans, J. R. (1988) Acclimation by the thylakoid membranes to growth irradiance and thylakoid protein. Aust.J. plant physioll8:93-106.
Federer, C. A., and C.B. Tanner (1966) Spectral distribution of light in the forest. Ecology 47:550-560.
Fitter, A. H.,and R. K. M. Hay (1981) Environmental physiology of plant. Academic press. pp:29-51.
Goodfellow, S., and J. P. Barkham (1974) Spectral transmission curves for a beech (Fagus sylvatica L.) canopy. Acta Bot. Neerl. 23:225-230.
Gorski, T. (1975) Germination of seeds in the shadow of plant. Physiol. Plant. 34:342-346.
Goulet, F., and P. Bellefleur (1986) Leaf morphology plasticity in response to light environment in deciduous tree species and its implication on forest succession. Can. J. For. Res. 16:1192-1195.
Groninger, J. W., J. R. Seiler, J. A. Peterson, and R.E.Kreh (1996) Growth and photosynthetic responses of four Virginia Piedmont tree species to shade. Tree Physiol. 16:773-778.
Harvey, G. W. (1980) Seasonal alteration of photosynthetic unit sizes in three herb layer components of a deciduous forest community. Amer. J. Bot. 67:293-299.
Igboanugo, A. B. I. (1990) Effects of shading on shoot morphology, wood production and structure of Quercus petraea seedlings. For. Ecol. Manage. 38:27-36.
Jones, R. H., and K. W. McLeod (1990) Growth and photosynthetic responses to a range of light environments in Chinese tallowtree and Carolina ash seedlings. For. Sci. 36(4):851-862.
Kamaluddin, M. and J. Grace (1993) Growth and photosynthesis of tropical forest tree seeding(Bischfia javanica Blume)as influenced by a change in light availability. Tress Physiology.13(3):189-201.
King, D. K. (1991) Tree allometry, leaf size and adult tree size in old growth forests of Western Oregon. Tree Physiol. 1991 (9) 369-381.
Kozlowski, T. T., P.J. Kramer, and S. G. Pallardy (1991) The Physiological Ecology of Woody Plant. Academic Press Inc. Harcourt Brace Jovanovich, Publishers.
Kramer, P. J. and T. T. Kozlowski (1979) Physiology of woody plants. Academic Press, New York.
Kwesiga, F. R., J. R. Grace, and A. P. Sandford (1986) Some photosynthetic characteristics of tropical timer trees as affected by the light regime during growth. Ann. Bot. 58:23-32.
Lawlor, D. W. (1987) Photosynthesis: metabolism, control and physiology. Longman Scientific & Technical. England.
Loach, K. (1967) Shade tolerance in tree seedlingsⅠ. Leaf photosynthesis and respiration in plants raised under artificial shade. New Phytol. 66:607-621.
Loach, K. (1970) Shade tolerance in tree seedlings Ⅱ. Growth analysis of plants raised under artificial shade. New Phytol. 69:273-286.
Maxwell, C., H. Griffiths, A. M. Borland, A. J. Young, M. S. J. Broadmea dow and M. C. Fordham (1995) Short-term photosynthetic responses of the C3-CAM epiphyte Guzmania monostachia var. monostachia to tropical seasonal transitions under field conditions. Aust. J. Plant Physiol. 22:771-781.
Oberbauer, S. F. and B. R. Strain (1986) Effects of canopy position and irradance on leaf physiology and morphology of Pentaclethra macrlolba (Mimosaceac). Am. J. Bot. 73:409-416.
Pearcy,R. W. (1990) Sunflecks and photosynthesis in plant canopies. Ann. Res. Plant Physiol. 41:421-453.
Pons, T. L. (1992) Seed responses to light. In: The Ecology of Regeneration in Plant Communities (M. Fenner, ed). pp231-259. CAB International. Press, Wallingford.
Poorter, L. (1999) Growth responses of 15 rain-forest tree species to a light gradient:the relative importance of morphological and physiological traits. Funct. Ecol. 13:396-410.
Recey, G. D., C. Glerum, and R. E. Hutchison (1983) The practicality of top-root ration in nursery stock characterization. For. Chron. 59:240-243.
Rincon, E. and P. Huanrte (1993) Growth responses of tropical deciduous tree seedlings to contrasting light conditions. Trees 7(4):202-207.
Smith, H. (1982) Light quality, photoperception and plant strategy. Ann. Rev. Plant Physiol. 33:481-518.
Stoutlesdijk, P. (1972) Spectral transmission curves of some types of leaf canopies with a note on seed germunation. Acta Bot. 21:185-191.
Sutton, R. F. (1980) Root system morphogenesis. N. Z. J. For. Sci. 10(1):264-292.
Tasker, R., and H. Smith (1977) The function of phytochrome in the natural environment. V. Seasonal changes in the radiant energy quality in woodlands. Photochem. Photobiol. 26:487-491.
Thompson, B. E. (1985) Seedling morphological evaluation. What you can tell by looking. In:Duryea, M. L. (1985) Proceedings: Evaluating Seedling Quality: Principles, Procedures, and Predictive Abilities of Major Tests. Forest Research Laboratory, Oregon State University, Corvallis, Oregon. P. 59-71.
Vazques-Yanes, C. (1980) Light quality and seed germination in Cecropia obtusifolia and Piper auritum from a tropical rainforest in Mexico. Phyton 38:33-35.
Vezina, P.E., and D.W.K. Boulter (1966) The spectral composition of near UV and visible radiation beneath forest canopies. Can. J. Bot. 44:1267-1284.
Welander, N. T., and B. Ottosson (1998) The influence of shading on growth and morphology in seedlings of Quercus robur L. and Fagus sylvatica L. For. Ecol. Mangage. 107:117-126.
Whatley, J. M., and F. R. Whatley (1980) Light and plant life. Edward Arnold. Limited. London.
Wiebel, J., D. Eamus, E. K. Chacko, W. J. S. Downton and P. Ludders (1993) Gas exchange characteristics of mangosteen (Garcinia mangostana L.) leaves. Tress Physiology.13:55-69.
Wiebel, J., D. Eamus, E. K. Chacko, W. J. S. Downton and P.Ludders (1994) Influence of irradiance on photosynthetic, morphology and growth of mangosteen (Garcinia mangostana L.) seedlings. Tress Physiology.14:263-274.
Williams, K., S.D. Davis, B. L. Gartner and S. Karlsson (1991) Factors limiting the establishment of a chaparral Oak, Quercus durata Jeps., in Grassland. USDA Forest Service Gen. Tech. Rep. PSW-126. Pp70-73.
Ziegenhagen, B. and W. Kausch (1995) Productivity of young shaded oaks (Quercus robur L.) as corresponding to shoot morphology and leaf anatomy. For. Ecol. Magage. 72:97-108.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李世代,<長期照護需求推估之探討>,內政部社區發展委員會,《社區發展季刊-長期照護體系之建構》,第九十二期,台北:內政部,2000。
2. 羅卓振南、鍾旭和、邱志明(1995)修枝對台灣櫸幼林生長及節癒合之研究。林業試驗所研究報告季刊。10(3):315-323。
3. 郭耀綸、吳祥鳴 (1997) 黃心柿、毛柿及大葉山欖苗木光合作用與形態對不同光量的可塑性。中華林學季刊 30(2):165-185。
4. 郭幸榮、黃進輝 (1999) 烏心石苗木生長於溫室內不同光度下之生理特性。中華林學季刊 32(1):25-37。
5. 翁仁憲 (1996) 作物之光合、呼吸及蒸散作用與其環境適應性關係。中華農業氣象 3(1):1-7。
6. 翁仁憲 (1994) 玻璃溫室微氣候對水耕蔬菜生育之影響。中華農業氣象1:35-39。
7. 侯金日、楊雅斯、王淑敏 (1999) 不同光質對兩種鬼針屬(Bidens)植物種子發芽之影響。中華民國雜草學會會刊 20:39-54。
8. 姜家華、王亞男、張國楨、周泰平 (1994) 不同種源台灣櫸葉綠素含量與苗木生長關係之研究。中華林學季刊 27(3):23-28。
9. 林信輝、劉坤樹 (1997) 福山試驗林十種闊葉樹種之光合成率、蒸散率及葉片厚度與氣象因子之關係。中華林學季刊30(3):269-278。
10. 李明仁 (1997) 光質對台灣赤楊種子發芽之效應。嘉義農專學報52:15-24。
11. 方榮坤、邱陸陽、廖天賜、林鴻忠 (1992) 不同光度對台灣原產三種柏科林木幼苗生物量之影響。國立中興大學實驗林研究報告 14(2):39-54。
12. 王相華 (1995) 不同光度對四種季風與林樹種幼苗生長及形態之影響。林業試驗所研究報告季刊 10(4):405-418。
13. 吳淑瓊<我國長期照護政策措施的檢討與建議>,《長期照護雜誌》第三卷第二期,台北,1999。
14. 吳淑瓊,<我國老人長期照護政策措施的檢討與建議>,《長期照護雜誌》,第三卷第三期,台北,1999。
15. 陳世堅,<個案管理導向之老長期照護系統模式之探討>,《中華醫務社會工作學刊》,台北:中華醫務社會工作學會,1999。