|
Bierens, H.J. (1987) Kernel estimators of regression functions. Cambridge University Press: Advances in Econometrics. Chu, C.K. and Marron, J.S. (1991), Choosing a kernel regression estimator(with discussion), Statistical Science, 6, 404-436. Cleveland, W.S. (1979), Robust locally weighted regression and smoothing scatter plots. Journal of the American Statistical Association, 74, 829-836. Collomb, G. (1981), Estimation non-parametrique de la regression: revue bilbliographique. International Statistical Review, 49, 75-93. Epanechnikov, V.A. (1969), Nonparametric estimates of a multivariate probability density. Theory of Probability and Its Applications, 14, 153-158. Eubank, R.L. (1988), Spline Smoothing and Nonparametric Regression. Marcel Dekker Inc., New York. Fan, J. (1992), Design-adaptive nonparametric regression. Journal of the American Statistical Association, 87, 998-1004. Fan, J. (1993), Local linear regression smoothers and their minimax e.ciencies. Annals of Statistics, 21, 196-216. Fan, J. and Gijbels I. (1992), Variable bandwidth and local linear regression smoothers. Annals of Statistics, 20, 2008-2036. Fan, J. and Gijbels I. (1996), Local Polynomial Modelling and Its Applications—Theory and Methodologies. London: Chapman and Hall. Gasser, T. and M¨uller, H.G. (1979), Kernel estimation of regression function. in Smoothing Techniques for Curve Estimation (T. Gasser and M. Rosenblatt, eds.), pp. 23-68, Heidelberg: Springer Verlag. Gasser, T. and M¨uller, H.G. (1984), Estimating regression functions and their derivatives by the kernel method. Scandinavian Journal of Statistics, 11, 171-185. Hall, P. and Marron, J.S. (1997), On the role of shrinkage parameter in local linear smoothing. Probability Theory and Related Fields, 108, 495-516. Haerdle, W. (1990), Applied Nonparametric Regression. Cambridge University Press, New York. Haerdle, W. (1991), Smoothing Techniques: With Implementation in S. Springer Series in Statistics, Springer Verlag, Berlin. Haerdle, W., Hall, P., and Marron, J.S. (1988), How far are automatically chosen regression smoothing parameters from their optimum? (with discussion)Journal of the American Statistical Association, 83, 86-101. Haerdle, W. and Marron, J.S. (1983), The nonexistence of moments of some kernel regression estimators. North Carolina Institute of Statistics, Mimeo. Series, No. 1537. Haerdle, W. and Marron, J.S. (1985), Optimal bandwidth selection in nonparametric regression function estimation. Annals of Statistics 13, 1465-1481. Jones, M.C. (1989), Discretized and interpolated kernel density estimates. Journal of the American Statistical Association, 84, 733-741. Jones, M.C., Samiuddin, A., Al-Harbey. A.H. and Maatouk, T.A.H. (1998), The edge frequency polygon. Biometrika, 85, 235-239. Marron, J.S. (1988), Automatic smoothing parameter selection: A survey. Empirical Economics, 13, 187-208. Marron, J.S. andWand, M.P. (1992), Exact mean integrated squared error. Annals of Statistics, 20, 712-736. Montgomery, D.C. and Peck, E.A. (1982), Introduction to Linear Regression Analysis. New York: Wiley. Mueller, H.G. (1988), Nonparametric Regression Analysis of Longitudinal Data. Lecture Notes in Statistics, Vol. 46. Springer, Berlin. Nadaraya, E.A. (1964), On estimating regression. Theory of Probability and Its Applications, 10, 186-190. Rice, J.,(1984), Bandwidth choice for nonparametric regression. Annals of Statistics, 12, 1215-1230. Rosenblatt, M. (1969), Conditional probability density and regression estimates. In: Multivariate Analysis II (Krishnaiah, ed.), 25-31. Academic Press, New York. Scott, D.W. (1992), Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley, New York. Seifert, B. and Gasser, T. (1996), Finite-sample variance of local polynomials: Analysis and solutions. Journal of the American Statistical Association, 91, 267-275. Simonoff, J.S. (1996), Smoothing Methods in Statistics. Springer-Verlag, New York. Stone, C.J. (1980). Optimal rates of convergence for nonparametric estimators. Annals of Statistics, 8, 1348-1360. Stuart, A. and Ord, J.K. (1987), Kendall’s Advanced Theory of Statistics, Vol. I. New York: Oxford University Press. Wand, M.P. and Jones, M.C. (1995), Kernel Smoothing, New York: Chapman and Hall. Watson, G.S. (1964), Smoothing regression analysis. Sankhya, Ser. A 26, 359-372. Wu, J.S. and Chu, C.K. (1992), Double smoothing for kernel estimators in nonparametric regression. Journal of Nonparametric Statistics, 1, 375-386.
|