跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.251) 您好!臺灣時間:2022/08/16 23:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁銘遜
研究生(外文):Ming-Shin Wong
論文名稱:膽鹽臨界微胞濃度的測定與THDC-L系統的平衡透析實驗探討
指導教授:劉振倫劉振倫引用關係
指導教授(外文):Chen-Lun Liu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生物技術研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:98
相關次數:
  • 被引用被引用:2
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
近年來由於國人飲食習慣西方化,所以膽固醇結石症患者日益普遍,以口服溶石藥物治療膽固醇結石症為患者常用之方法,其風險性低。膽鹽 (BS) 為常用之溶石藥物,目前在臨床上所使用作為溶石藥物的膽鹽有taurochenodeoxycholate (TCDC)、tauroursodeoxycholate (TUDC),但價格昂貴且帶有副作用。Taurohyodeoxycholate (THDC) 是一種還未為臨床使用的新膽鹽,由豬的膽汁所純化,在來源方面具普遍性,所以為潛力極高的藥物,有必要對此藥物之物化特性作研究,以作為將來成為臨床藥物之依據。本研究對膽鹽臨界微胞濃度 (CMC) 的測定是採用吸光度法與導電度法,在吸光度對於膽鹽濃度之圖形中,偏離比爾定律之點即為CMC,在導電度對於膽鹽濃度圖形中,導電度梯度的改變點即為CMC。在THDC-L溶液系統的K (BS/L) 值研究中,採用25,000 MWCO與12,000~14,000 MWCO兩種孔徑之透析膜作比較,而透析膜外則配製20 mM THDC與40 mM THDC兩種溶液作比較,利用透析膜內外膽鹽濃度差與mixed micelle無法通過透析膜的原理作實驗之設計,透析膜內之溶液則配製THDC/L為80/2、80/4、80/8、80/16、80/24 mM五組作為起始濃度設計,THDC-L溶液系統經5天的震盪放置後會達到系統平衡,再取透析膜內外之溶液作分析,求出系統平衡時之K值。本研究以吸光度法所測定之膽鹽CMC分別為taurocholate (TC)約6 mM,TCDC約2.2 mM,TUDC約2.8 mM,THDC約2.5 mM,以導電度法所測定結果為TC約7 mM,THDC約2.2 mM。平衡透析實驗結果顯示,無論透析膜外所使用之THDC濃度為20 mM或40 mM,都會有個共同現象,當卵磷脂濃度 (CL) 低時,K值較大,隨著CL增加K值會持續降低,最後趨近一定值約1,但使用12,000~14,000 MWCO孔徑之透析膜結果較好,因為卵磷脂經過其膜層所產生之漏出現象較少。
Abstract

Patients of cholesterol gallstones have recently increased in oriental countries since eating habits of oriental people became westernized. To treat this disease, oral administration of drugs in dissolving cholesterol gallstones have been used. Basically, two bile salts (BS), taurochenodeoxycholate (TCDC) and tauroursodeoxycholate (TUDC), are clinically effective; however, both of them are expensive and have side effects. Taurohyodeoxycholate (THDC), a new BS obtained from bile of pigs, has been recently studied to be effective in dissolving cholesterol gallstones in vitro. This result indicates that further investigation of THDC is potential, especially for the study of physicochemical properties of THDC. The critical micelle concentration (CMC) of THDC was determined by using UV-Vis spectrophotometer and conductivity meter. It was showed that a point in a plot of properties vs THDC concentrations which deviated from Beer’s Law was CMC of THDC. Moreover, CMC was estimated by a changing point of conductivity gradient in the plot. To investigate K (BS/lecithin (L)) of mixed micelles in THDC-L solutions by using a dialysis technique, we used two kinds of dialysis membrane which were 25,000 molecular weight cut-off (MWCO) and 12,000~14,000 MWCO. We also used 20 mM THDC and 40 mM THDC initially in receiver side. Moreover, five THDC/L concentrations in donor side, 80/2, 80/4, 80/8, 80/16, and 80/24 mM, were chosen. After 5 days’ of shaking, we analyzed the concentration in donor side and receiver side to determine K values in the equilibrium of THDC-L solutions. The result of CMC of BS by using UV-Vis spectrophotometer is as follows: taurocholate (TC) 6 mM, TCDC 2.2 mM, TUDC 2.8 mM, THDC 2.5 mM. Besides, CMC of TC is 7 mM and THDC is 2.2 mM by using a method of conductivity meter. The experimental outcome of equilibrium dialysis is the same, regardless of 20 mM or 40 mM of THDC used in receiver side. When lecithin concentration (CL) is low, K is large. However, when CL becomes high, K value decreases. Finally, it goes to a constant value (~1). Experimental result shows that dialysis membrane of 12,000~14,000 MWCO is better than that of 25,000 MWCO because of low lecithin leakage.
目錄
中文摘要 ……………………………………………………………...…… i
英文摘要 ………………………………………………………………….. ii
目錄 ………………………………………………………………………. iv
圖目錄 ……………………………………………………………………. vi
表目錄 ……………………………………………………………..……. viii
縮寫對照表 …….………………………………………………….……….x

第一章 緒論

1.1前言 ……………………………………………………………………. 1

第二章 文獻回顧

2.1膽汁分泌 ………………………………………………………………. 7
2.2膽汁中微胞之形成 …………………………………………………… 12

第三章 問題陳述

3.1簡介 ……………………………………………………………..……. 28
3.2平衡透析實驗的缺點 ………………………………………………... 31
3.3複合微胞之組成 …………………………………………………..…. 34

第四章 臨界微胞濃度的測定

4.1簡介 ………………………………………………………………..…. 35
4.2材料與方法 …………………………………………………………... 38
4.3結果與討論 ………………………………………………………..…. 41

第五章 以平衡透析實驗求THDC-L平衡系統之K值

5.1簡介 …………………………………………………………………... 56
5.2材料與方法 ………………………………………………………...… 58
5.3結果與討論 …………………………………………………………... 65

第六章 結論

6.1總論 ……………………………………………………………….….. 85
6.2未來展望 ……..................................................................................…. 87

參考文獻 ……………………………………………………………...…. 88









圖目錄

圖1-1肝膽在消化系統的位置 ….……………………………………….. 5
圖1-2膽固醇結石的生成原因 …………………………………………… 6
圖2-1人類的膽酸 ………..……………………………………………… 19
圖2-2人體膽汁中主要磷脂質的分子結構 …………………………….. 20
圖2-3膽鹽 (TC、TUDC、TCDC、THDC) 的化學結構 ……………... 21
圖2-4人體膽汁中,一級、二級和三級膽鹽合成代謝之化學結構及
位置 ……………………………………………………………… 22
圖2-5膽鹽的腸肝循環 ………………………………………………….. 23
圖2-6 CDC與UDC溶解膽固醇結石機制 ………………………….…. 24
圖2-7複合微胞之類桿狀組成中之主要兩種模型 …………………….. 25
圖2-8平衡透析實驗之裝置圖 ………………………………………….. 26
圖4-1 初功率的輻射被c mole/l吸收物質的溶液吸收及路徑長度
b m所造成的減弱現象 …...………………………………...…. 36
圖4-2 TC臨界微胞濃度之測定 ………………………………………... 43
圖4-3 TCDC臨界微胞濃度之測定 ………………...…………………... 44
圖4-4 TUDC臨界微胞濃度之測定 ………………………...…………... 45
圖4-5 THDC臨界微胞濃度之測定 ……...……………………………... 46
圖4-6以導電度法測定TC之臨界微胞濃度 ………………………...…. 47
圖4-7以導電度法測定THDC之臨界微胞濃度 ……………………….. 48
圖5-1平衡透析實驗中透析膜的作用圖 ……………………………..… 67
圖5-2 THDC溶液之檢量線圖 ……………………………………..…… 68
圖5-3 lecithin溶液之檢量線圖 ……………………………………...….. 69

圖5-4平衡透析實驗之K值與lecithin濃度關係圖 (透析膜孔徑
25,000 MWCO,receiver side為20 mM THDC) ..………….…… 70
圖5-5平衡透析實驗之K值與lecithin濃度關係圖 (透析膜孔徑
25,000 MWCO,receiver side為40 mM THDC) …….………….. 71
圖5-6平衡透析實驗之K值與lecithin濃度關係圖 (透析膜孔徑
12,000~14,000 MWCO,receiver side為40 mM THDC) ….……72
圖5-7 TC溶液之檢量線圖 ……………………………………..……….. 73
圖5-8 TCDC溶液之檢量線圖 ………………………………………….. 74
圖5-9 TUDC溶液之檢量線圖 ……………………………………..…… 75
















表目錄

表2-1人類肝導管之膽汁的組成 ……………………………………….. 27
表4-1 一些常見發色團的吸收特性 ………………………………….... 49
表4-2 TC在pH7.4,NaCl 0.15 M之0.01 M PBS中所測得的
吸光度值 ……………………………………………………...…. 50
表4-3 TCDC在pH7.4,NaCl 0.15 M之0.01 M PBS中所測得的
吸光度值 ………………………………………………………… 51
表4-4 TUDC在pH7.4,NaCl 0.15 M之0.01 M PBS中所測得的
吸光度值 ……………………………………………………...…. 52
表4-5 THDC在pH7.4,NaCl 0.15 M之0.01 M PBS中所測得的
吸光度值 ………………………………………………………… 53
表4-6 TC在pH7.4,NaCl 0.15 M之0.01 M PBS中所測得的
導電度值 ……………………………………………………….... 54
表4-7 THDC在pH7.4,NaCl 0.15 M之0.01 M PBS中所測得的
導電度值 ………………………………………………………… 55
表5-1分析膽鹽時所使用之藥品與藥量 ……………………………….. 76
表5-2不同濃度THDC溶液 (PBS 0.01 M, pH7.4, NaCl 0.15 M) 經
酵素藥品混合後測得之吸光度值 ……………………………… 77
表5-3不同濃度lecithin溶液 (PBS 0.01 M, pH7.4, NaCl 0.15 M) 經
酵素藥品混合後測得之吸光度值 ……………………………… 78
表5-4平衡透析實驗之結果 (透析膜孔徑25,000 MWCO,
receiver side 20 mM THDC) ……....………………...…………… 79
表5-5平衡透析實驗之結果 (透析膜孔徑25,000 MWCO,
receiver side 40 mM THDC) …………...………………………… 80
表5-6平衡透析實驗之結果 (透析膜孔徑12,000~14,000 MWCO,
receiver side 40 mM THDC) ……………...………………...……. 81
表5-7 TC溶液 (PBS 0.01 M, pH7.4, NaCl 0.15 M) 加入酵素混合後
之吸光度測定 ……………………………………………..…….. 82
表5-8 TCDC溶液 (PBS 0.01 M, pH7.4, NaCl 0.15 M) 加入酵素混合後
之吸光度測定 …………………………………………………… 83
表5-9 TUDC溶液 (PBS 0.01 M, pH7.4, NaCl 0.15 M) 加入酵素混合後
之吸光度測定 ………………………………………………...…. 84
參考文獻

朱正心。 2000 。膽道結石免開刀。消化系統保健園地網頁。肝膽胃腸科。馬階紀念醫院消化系內科。台灣。(網址:www2.mmh.org.tw/gi/gi.htm)

朱正心。 1998 。現代文明病之一------膽結石。消化系統保健園地網頁。肝膽胃腸科。馬階紀念醫院消化系內科。台灣。(網址:www2.mmh.org.tw/gi/gi.htm)

東原英二;田中直見。郭建 譯。 1994 。結石教室。膽結石治療篇。書泉出版社。台灣。pp:113-159。

徐啟峰。 1998 。以藥物動力學模式分析模擬膽汁中膽固醇結石之溶出機制。國立東華大學生技所碩士論文。pp:33-40。

楊慶成。 1999 。儀器分析。眾光文化事業有限公司。台北。台灣。pp:160-203。

William F. Ganong。房同經 校閱。白禮源 編譯。 1996 。甘龍醫用生理學。肝膽鹽系統。藝軒圖書出版社。台灣。pp:528-534。

金光亮。 1997 。膽囊結石之治療時機及方式的選擇。膽道結石症。九州圖書出版社。台灣。pp:85-98。


邱仁輝。 1997 。膽石症之形成、流行病學與自然病史。膽道結石症。九州圖書出版社。台灣。pp:75-84。

端木梁、李建雄、黃淑姿、翁郁嘉。 1996 。生物化學。藝軒圖書出版社。台北。台灣。pp:853-858。

蔡世豪。 1997 。膽石病的病理。膽道結石症。九州圖書出版社。台灣。pp:23-32。

劉正雄。 1997 。應用生物藥劑學與藥物動力學。合記圖書出版社。台北。台灣。pp:139-149。

Admirand, W. H.; Small D. M. 1968. The physicochemical basis of cholesterol gallstone formation in man. J. Clin. Invest. (47): 1043-1052.

Alme, B.; Bremmelgaard, A.; Sjovall, J.; Thomassen, P. 1977. Analysis of mechanism profiles of bile acids in urine using a lipophilic anion exchanger and computerized gas-liquid chromatography-mass spectrometry. J. Lipid Res. (18): 339-362.

Alvaro, D.; Cantafora, A.; Attili, A. F.; Corradini, S. G.; DeLuca, C.; Minervini, G.; Di Blase, A. 1986. Relationships between bile salts hydrophilicity and phospholipid composition in bile of various animal species. Comp. Biochem. Physiol. (83B): 551-554.

Angelico, M.; Mogavero, L.; Baiocchi, L.; Nistri. A.; Gandin, C. 1995. Dissolution of human cholesterol gallstones in bile salt/lecithin mixture: effect of bile salt hydrophobicity various pHs. Scand. J. Gastroenterology (30): 1178-1185.

Baiocchi, L.; Virgilio, C.; Arancia, G.; Cosentino, S.; Calcabrini, A.; Nistri, A.; Russo, A.; Angelico, M. 1997. Composition and aggregational forms of biliary lipids in human bile after short-term administration of Taurohyo-
deoxycholic acid. Hepatology Res. (7): 178-187.

Barnwell, S. G.; Tuchweber, B.; Yousef, I. M. 1987. Biliary lipid secretion in the rat during infusion of increasing doses of unconjugated bile acids. Biochem. Biophys. Acta. (922): 221-233.

Broughton, G. 1994. Chenodeoxycholate : the bile acid. The drug: a review. Amer. J. Med. Sci. 307(1): 54-63.

Cantafora, A.; Di Blase, A.; Alvaro, D.; Angelico, M.; Marrin, M.; Attili, A. F. 1983. High performance liquid chromatographic analysis of molecular species of phosphatidylcholine: develop of quatitative assay and its application to human bile. Clin. Chim. Acta. (134): 281-295.

Carey, M. C.; Cahalane, M. J. Enterohepatic circulation. In: Arias, I. M.; Jakoby, W. E.; Popper, H.; Schachter, D.; Shafritz, D. A. 1988. The liver: biology and pathobiology. New York: Raven Press, Ltd., 573-616.
Carey, M. C.; Mazer, N. A.; Benedek, G. B. 1977. Novel physical-chemical properties of ursodeoxycholic acid (UDA) and its conjugates : relevance to gallstone dissolution in man. Gastroenterology (72): 1036.

Carey, M. C.; Montel, J. C.; Phillips, M. C.; Armstrong, M. J.; Mazer, N. A. 1981. Thermodynamic and molecular basis for dissimilar cholesterol-
solubilizing capacities by micellar solutions of bile salt: Cases of sodium chenodeoxycholate and sodium ursodeoxycholate and their glycine and taurine conjugates. Biochemistry (20): 3637-3648.

Carey, M. C.; Small, D. M. 1969. Micellar properties of dihydroxy and trihydroxy bile salts: effects of counterion and temperature. J. Colloid Interface Sci. (31): 382-396.

Carey, M. C.; Small, D. M. 1970. The characteristics of mixed micelle solutions with particular reference to bile. Amer. J. Med. (49): 590-608.

Carey, J. B.; Williams, G. 1963. Metabolism of lithocholic acid in bile fistula patients. J. Clin. Invest. (42): 450-455.

Danzinger, R. G.; Hofmann, A. F.; Schoenfield, J. L.; Thistle, J. L. 1972. Dissolution of cholesterol gallstone by chenodeoxycholic acid. N. Engl. J. Med. (286): 1-8.


David, W. H.; Carey, M. C. 1990. Chemical species of lipids in bile. Hepatalogy (12): 6-16.

Higuchi, W. I. 1984. Kinetic and mechanism of cholesterol gallstone dissolution. Hepatology (4): 161s-165s.

Higuchi, W. I.; Arakawa, M.; Lee, P. H.; Noro, S. 1987. Simple micelle-
mixed micelle coexistence equlibria for the taurocholate-, taurocheno-,
deoxycholate-, and tauroursodeoxycholate-lecithin systems. J. Colloid Interface Sci. (119): 30-37.

Higuchi, W. I.; Su, C. C.; Daabis, N.; Wanichsirrioj, A.; Hofmann, A. F. 1984. Mechanism of cholesterol monohydrate dissolution in taurocholate-
lecithin media: Correlation between equilibrium dialysis results and
dissolution rates. J. Colloid Interface Sci. (98): 9-19.

Higuchi, W. I.; Su, C. C.; Park, J. U.; Alcan, M. H.; Gulari, E. 1981. Mechanism of cholesterol gallstone dissolution. Analysis of the kinetics of cholesterol monohydrate dissolution in taurocholate/lecithin solution by the Mazer, Benedek, and Carey model. J. Phys. Chem. (85): 127-129.

Hjelm, R. P.; Thiyagarajan, P.; Alkan, H. 1988. A small angle neutron scattering study of the effects of dilution on particle morphology in mixture of glycocholate and lecithin. J. Appl. Crystallogr. (21): 858-863.

Hjelm, R. P.; Thiyagarajan, P.; Alkan, H. 1992. Organization of phosphati-
dylcholine and bile salt in rodlike mixed micelles. J. Phys. Chem. (96): 8653-8661.

Hofmann, A. F. 1984. Pathogenesis of cholesterol gallstones. J. Clin. Gastroenterol. (10): s1-s11.

Hofmann, A. F. 1984. Chemistry and enterohepatic circulation of bile acids. Hepatology (4): 4s-14s.

Hofmann, A. F. 1984. Medical treatment of cholesterol gallstones by bile desaturating agents. Hepatology (4): 199s-208s.

Hofmann, A. F. 1989. Medical dissolution of gallstone by oral bile acid therapy. Am. J. Surgery (158): 198-204.

Hofmann, A. F. 1995. Bile acid as drug: principles, mechanisms of action and formations. Ital. J. Gastroenterol. 27(2), 106-113.

Isaksson, B. 1953/1954. On the dissolving powder of lecithin and bile salt for cholesterol in human bladder bile. Acta. Sec. Med. Upsal. (50): 296-306.

Kryczka, W.; Grieb, P. 1994. Clinical pharmacology of ursodeoxycholic acid. Postepy. Hig. Med. Dosw. (48): 53-68.

Kang, K. H.; Kim, H. U.; Lim, K. H. 2001. Effect of temperature on critical micelle concentration and thermodynamic potentials of micellization of anionic ammonium dodecyl sulfate and cationic octadecyl trimethyl ammonium chloride. Colloids and Surfaces (189): 113-121

Lee, P. H. 1989. Mechanism of cholesterol monohydrate dissolution in aqueous bile salt-lecithin media-correlation between micellar species and dissolution rates. Ph.D. dissertation, University of Utah, Salt Lake City.

Lee, P. H.; Higuchi, W. I.; Adachi, Y.; Mazer, N. A. 1992. Mechanisms of cholesterol monohydrate dissolution in aqueous taurocholate-,
taurochenodeoxycholate-, and tauroursodeoxycholate-lecithin solutions: Correlation between micellar species and dissolution rates. J. Colloid Interface Sci. (154): 35-50.

Lee, P. H.; Higuchi, W. I.; Mazer, N. A. 1990. Cholesterol monohydrate dissolution rates and solubilities in aqueous taurocholate, taurochenodeoxy-
cholate, and tauroursodeoxycholate solutions: a comparative study. J. Colloid Interface Sci. (137): 48-65.

Liu, C. L. 1997. Analysis of cholesterol gallstone therapy based on a model of cholesterol binding to mixed bile salt-lecithin micelles. The Chin. Pharm. (49): 103-118.


Liu, C. L. 1995. Simple micelle-mixed micelle coexistence in bile salt-lecithin solutions saturated with cholesterol monohydrate. J. Chin. Colloid and Interface Soc. (18): 243-250.

Mazer, N. A.; Benedek, G. B.; Carey, M. C. 1980. Quasielastic light-scattering studies of aqueous biliary lipid system. Mixed micelle formation in bile salt-lecithin solutions. Biochemistry (19): 601-615.

Moschetta, A.; van Berge-Henegouwen, G. P.; Portincasa, P.; Renooij, W.; Groen, A. K.; van Erpecum, K. J. 2001. Hydrophilic bile salts enhance differential distribution of sphingomyelin and phosphatidylcholine between micellar and vesicular phases: potential implications for their effects in vivo. J. Hepatology (34): 492-499.

Nakayama, F. 1966. Cholesterol-holding capacity of bile in relation to gallstone formation. Clin. Chim. Acts. (14): 171-176.

Naganuma, H.; Liu, C. L.; Jain, U. K.; Adachi, Y.; Higuchi, W. I. 1997. Quantitative examination of the simple micelle-mixed micelle coexistence for the taurocholate-lecithin system by GP-HPLC. J. Colloid
Interface Sci. (189): 17-22.

Nichol, J. W.; Ozarowski, J. 1990. Sizing of lecithin-bile salt mixed micelles by size-exclusion high-performance liquid chromatography. Biochemistry (29): 4600-4606.
Patton, G. M.; Fasulo, J. M.; Robins, S. J. 1982. Separation of phospholipids and individual molecular species of phospholipids by high-performance liquid chromatography. J. Lipid Res. (23): 190-196.

Robins, S. J.; Patton, G. M. 1986. Separation of phospholipid molecular species by high performance liquid chromatography: potentials for use in metabolic studies. J. Lipid Res. (27): 281-295.

Roehrkasse, R.; Fromm, H.; Maiavolti, M.; Tunuguntla, A. K.; Ceryak, S. 1986. Gallstone dissolution treatment with a combination of chenodeoxy-
cholic and ursodeoxycholic acids. Study of safety, efficacy and effects on bile lithogenicity, bile acid pool, and serum lipids. Dig. Dis. Sci. (31): 1032-1040.

Salvioli, G.; Igimi, H.; Carey, M. C. 1983. Cholesterol gallstone dissolution in bile. Dissolution kinetics of crystalline cholesterol monohydrate by conjugated chenodeoxycholate-lecithin and conjugated ursodeoxycholate-
lecithin mixtures: dissimilar phase equilibria and dissolution mechanisms. J. Lipid Res. (24): 701-720.

Schoenfield, L. J.; Lachin, J. M. 1981. Chenodiol (chenodeoxycholic acid) for dissolution of gallstones: the National Cooperative Gallstone Study. A controlled trial of efficacy and safety. Ann. Intern. Med. (95): 257-282.


Schurtenberger, P.; Mazer, N. A.; Kanzig, W. 1985. Micelle to vesicle transition in aqueous solutions of bile salt and lecithin. J. Phys. Chem. (89): 1042-1049.

Shankland, W. 1970. The equilibrium and structure of lecithin-cholate mixed micelles. Chem. Phys. Lipids (4): 109-130.

Small, D. M. "The Bile Acid: Chemistry, Physiology, and Medicine" (P. P. Nair and D. Kritchevsky, Eds.) Vol. 1. pp. 249-359. Plenum Press, New York, 1971.

Small, D. M. 1968. Molecular association in biology and related systems. Adv. Chem. Sev. (84): 31-52.

Small, D. M.; Bourges, M.; Dervichian, D. C. 1966. Ternary and quaternary aqueous systems containing bile salt, lecithin, and cholesterol. Nature (211): 816-816.

Stephen, D. T.; John, M. D. 1978. Re-evaluation of the 3α-hydroxysteroid dehydrogenase assay for total bile acids in bile. J. Lipid Res. (19): 924-928.

Stiehl, A.; Raesch, R.; Czygan, P.; Gotz, R.; Manner, C. H.; Walker, S.; Kommerell, B. 1980. Effects of biliary bile acid composition on biliary cholesterol saturation in gallstone patients treated with chenodeoxycholic acid and/or ursodeoxycholic acid. Gastroenterology (79): 1192-1198.
Su, C. C. 1982. Ph.D. Thesis, The University of Michigan, Arm Arbor, MI.

Talalay, P. 1960. Enzymic analysis of steroid hormones. Methods Biochem. Anal. (8): 119-143.

Thistle, J. L.; Hofmann, A. F. 1973. Efficacy and specificity of chenodeoxy-
cholic therapy for dissolving gallstones. N. Engl. J. Med. (289): 655-659.

Tint, S. G.; Salen, G.; Colalillo, A.; Graber, D.; Speck, J.; Sheffer, S. 1982. Ursodeoxycholic acid: A safe and effective agent for dissolving cholesterol gallstones. Ann. Intern. Med. (97): 351-356.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王富雄(民83):國小遊戲化教學的探討。國教月刊40(7,8),18-20。
2. 亓婷婷(民87):當前臺灣語文教育的隱憂。中國語文,487,7-15。
3. 江惜美(民85):小學語文教學的遊戲化。國語文教育通訊,13,32-41。
4. 余迺永(民85):由國語注音符號與古文字的關係談識字教育於中文教學的重要性。華文世界,82,22-34。
5. 吳明雄(民84):國民小學注音符號教學現況。社教資料雜誌,201,4-6。
6. 吳敏而(民79a):入小學的第一個危機(上)-未雨綢繆談注音。學前教育,13,16-17。
7. 吳敏而(民79b):入小學的第一個危機(下)-未雨綢繆談注音。學前教育,14,20-21。
8. 李啟原(民81):談國語一字多音的簡化(上)。國語文教育通訊,1,43-46。
9. 李淑華(民87):國語羅馬字拼音與注音符號第二式。國教之友(50)1,26-33。
10. 秦麗花(民90):教師如何進行行動研究。翰林文教雜誌,17,67-73。
11. 許長謨(民89):當前國語羅馬拼音論戰之三個堅持與盲點。語文教育通訊,21,28-37。
12. 張書玲(民83):注音符號教學法。華文世界,74,1-2。
13. 張雅婷(民89):上聲聲調發音困難原因及其教學。師友月刊,402,82-84。
14. 郭譽玫(民85):論注音拼音和小學英語教學之取捨與興廢:隔海旁觀國內的語言戰爭與語文教育。文教新潮,1(4),8-12。
15. 陳弘昌(民85):談國字正音。國教輔導,35(6),54-57。