跳到主要內容

臺灣博碩士論文加值系統

(3.239.4.127) 您好!臺灣時間:2022/08/20 07:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許建發
研究生(外文):Jian-Fa Hsu
論文名稱:新式蛋白質傳送系統與人類共活化者SRC-1作用因子之研究
論文名稱(外文):Studies of a novel protein delivery system and interacting proteins of the human coactivator SRC-1
指導教授:李漢榮李漢榮引用關係
指導教授(外文):Han-Jung Lee
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生物技術研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:56
中文關鍵詞:細胞核受體蛋白質傳導區域
外文關鍵詞:nuclear receptorprotein transduction domains
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
細胞核受體 (nuclear receptor) 是一個受ligand調控的轉錄因子,他可以直接結合到標的基因的hormone response elements (HREs)或者形成同二元體甚至與retinoid X receptor (RXR) 形成異二元體結合到HREs上。共調節者的參與也是影響細胞核受體轉錄反應的重要元素,其中steroid receptor coactivator-1 (SRC-1) 是最早被選殖出來的的共活化者,我們欲瞭解此共調節者如何在這複雜的轉錄程序上扮演他的角色。在本研究中涵蓋了兩個目標,其一為探索SRC-1在細胞中所處的位置,其二為選殖SRC-1交互作用的蛋白質。因為細胞膜生物特性的限制,將蛋白質送進細胞仍是一個障礙。最近幾年,一些具有蛋白質傳導區域 (protein transduction domains ; PTDs) 的胜�L相繼被發現能夠有效的穿透哺乳動物細胞膜,此作用稱為蛋白質傳導 (protein transduction)。Human immunodeficiency virus (HIV)-1 transactivator protein (TAT)的蛋白質傳導區域 ( 47-57個胺基酸)已經被證實能夠穿透細胞膜。我們以TAT-GFP這個融合蛋白來探討TAT蛋白質在HepG2細胞內的輸送情形。結果顯示TAT-GFP融合蛋白不僅能夠穿透哺乳動物細胞的細胞膜,更能夠穿透細胞核膜聚集在細胞核中,可是單單以green fluorescent protein (GFP) 卻無法通過哺乳動物細胞的細胞膜。我們進一步想以TAT-SRC-GFP融合蛋白來探討SRC-1在經由與TAT形成融合蛋白進入細胞內時,其所在位置及是否仍具有生物活性。但是目前TAT-SRC-GFP在大腸桿菌中的蛋白質表現表現遇到些許困難。為了選殖SRC-1可能的交互作用蛋白質,我們利用酵母菌二合法,以SRC-1 118-780的片段基因 (包括PAS區域和LXXLL區域) 為餌,來篩選人類cDNA基因庫中是否還有與SRC-1有交互作用的蛋白質。截至目前為止,我們尚未從人類HeLa、kidney和brain的cDNA基因庫中選殖出與SRC-1有交互作用的蛋白質。原因可能為mating效率太低,基因庫品質欠佳,或與SRC-1有
交互作用的蛋白質具有組織特異性或甚至不存在。
Nuclear receptors act as ligand-dependent transcription factors by directly interacting as monomers, homodimers, or heterodimers with the retinoid X receptor (RXR) with hormone response elements (HREs) of target genes. The effects of nuclear receptors on transcription are mediated through recruitment of coregulators. Steroid receptor coactivator-1 (SRC-1) was the first identified coactivator. We want to know that how assembly of transcriptional complexs activates nuclear hormone receptors by recruitment of distinct subclass of coregulators. We have two goals in this approach, one is to observe locolization of SRC-1, and another is to isolate interacting proteins of SRC-1. Intracellular delivery of proteins remains a problem because of the bioavailability restriction imposed by the cell membrane. Recently, several peptides, called protein transduction domains (PTDs) have been identified that possess the ability to tranverse cell membranes efficiently in a process termed protein transduction. The PTD in the human immunodeficiency virus (HIV-1) transactivator (TAT) protein (amino acid 47-57) has been shown to successfully mediate the introduction of proteins into mammalian cells. TAT-GFP fusion protein was used to study the intracellular localization and traffick in the human HepG2 cells. The results showed that TAT-GFP fusion protein can enter into cytoplasm and accumulate in the nucleus.However, green fluorescent protein (GFP) itself fails to do so. Furthermore, TAT-SRC-GFP was used to monitor SRC-1 biological activity and localization. Unfortunately, we currently have difficulty in over-expression of TAT-SRC-GFP in E.coli strains. Using yeast two-hybrid system, we want to isolate SRC-1 interacting protein from human cDNA library using SRC-1 118-780 fragments with PAS domain and LXXLL motifs as bait. So far, We did not find any SRC-1 interacting protein from screening human HeLa, kidney, and brain cDNA libraries. We assume that low efficiency of yeast mating, low quality of cDNA libraries, or SRC-1 interacting proteins have tissue specificity, or even don’t exit.
中文摘要-------------------------------------------------------------------------i
英文摘要-------------------------------------------------------------------------iii
目錄-------------------------------------------------------------------------------v
前言-------------------------------------------------------------------------------1
材料與方法----------------------------------------------------------------------10
結果-------------------------------------------------------------------------------19
討論-------------------------------------------------------------------------------22
參考文獻-------------------------------------------------------------------------26
圖表-------------------------------------------------------------------------------32
Abu-Am Y, Dowdy SF, Ross FP, Clohisy JC, Teitelbaum SL. TAT fusion proteins containing tyrosine 42-deleted IκBα arrest osteoclastogenesis. J Biol Chem 276:30499-30503, 2001.

Aranda A and Pascual A. Nuclear hormone receptors and gene
expression. Physiol Rew 81: 1269-1281, 2001.

Beato M, Herrlich P, and Schutz G. Steroid hormone receptors : many
actors in search of a plot. Cell 83: 851-857, 1995.

Caron NJ, Torrente Y, Camirand G, Bujoid M, Chapdelain P, Leriche K, Bresolin N, Tremblay JP : Intracellular delivery of a Tat-eGFP fusion
protein into mouse cells. Mol Therapr 3:310-318, 2001.

Chauchereau A, Georgiakaki M, Perrin-Wolff M, Milgrom E, Loosfelt H. JAB1 interacts with both the progesterone receptor and SRC-1. J Biol
Chem 275:8540-8548, 2000.

Chen TN, Sharma SK, Ramsey TM, Jiang L, Martin MS, Baker K, Adams PD, Bair KW, Kaelin WG, Jr. Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc Natl Acad Sci
USA 96:4325-4329, 1999.

Dodd CH, Hsu HC, Chu WJ, Yang P, Zhang HG, Mountz JD Jr., Zinn K, Forder J, Josephson L, Weissleder R et al. Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J
Immunol Methods 256:89-105, 2001.

Ezhevsky SA, Nagahara H, Vocero-Akbani AM, Glus DR, Wei MC, Dowdy SF. Hypo-phospharylation of the retinoblastoma protein (pRb) by cyclin D:Cdk4/6 complexes results in active pRb. Proc Natl Acad Sci
USA 94:10699-10704, 1997.

Frankel AD and Pabo CO. Cellular uptake of the tat protein from haman
immunodeficiency virus. Cell 55:1189-1193, 1998.

Forman BM and Samuels HH. Interactions among a subfamily of nuclear hormone receptors: the regulatory zipper model. Mol Endocrinol 4:
1293-1301, 1990.

Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y. Arginine-rich peptides having potential as carriers for intracellular protein
delivery. J Biom Chem 276 : 5836-5840, 2001.

Green M, and Loewenstein PM. Autonomous founctional domain of chemically synthesized human immunodeficiency virus tat trans-activator
protein. Cell 55:1179-1188, 1988.

Green S, Kumar V, theulaz I, Wahli W, and Chambon P : The N-terminal DNA-binding “ zing finger ” of the oestrogen and glucocorticoid receptors determines target gene specificity. EMBO J 7: 3037-3077, 1988.

Ho A, Schwarze SR, Mermelstein SJ, Waksman G, Dowdy SF. Synthetic protein transduction domains : enhanced transduction potential in vitro
and in vivo. Cancer Res 61 : 474-477, 2001.

Jo D, Nahabi A, Doxsee C, Lin Q, Unutmaz D, Chen J, Ruley HE. Epigenetic regulation of gene structure and function with a
cell-permeable Cre recombinase. Nat Biotechnol 19:929-933, 2001.

Josephson L, Tung CH, Moore A, Weissleder R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide
conjugates. Bioconjug Chem 10:186-191, 1999.

Kato D, Miyazawa K, Ruas M, Starborg M, Wada I, Oka T, Sakai T, Peters G, Hara E. Features of replacative senescence induced by direct addition of antennapedia-p16INK4A fusion protein to human diploid
fibroblasts. FEBS Lett 427:203-208, 1998.

Kim HJ, Kim JH, Lee JW. Steroid receptor-1 interacts wuth serum response factor and coactivates serum redsponse element-mediated
transactivations. J Biol Chem 273:28564-28567, 1998.

Klekotka PA, Santoro SA, Ho A, Dowdy SF, Zutter MM. Mammary epithelial cell-cycle progression via the α2β1 integrin:unique and synergistic roles of the α2 cytoplasmic domain. Am J Pathol 159:983-992,
2001.

Kumar MB, Perdew GH. Nuclear reveptor coactivator SRC-1 interacts with the Q-rich subdomain of the AhR and modulates its transactivation
potential. Gene Expr 8:273-286, 1999.

Kwon HY, Eum WS, Jang HW, Kang JH, Ryu J, Ryong Lee B, Jin LH, Park J, Choi SY. Transduction of Cu,Zn-superoxide dismutase mediated by an HIV-1 Tat protein basic domain into mammalian cells. FEBS Lett
485:163-167, 2000.

Lazar MA. Nuclear hormone receptors : from molecules to diseases. J
Invest Med 47: 364-368, 1999.

Lee SK, Kim HJ, Kim JW, Lee JW. Steroid receptor coactivator-1 and its family members differentially regulate transcription by the tumor
suppressor protein p53. Mol. endocrinol. 13:1924-1933, 1999.

Lee SK, Kim HJ, Na SY, Kim TS, Choi HS, Im SY, Lee JW. Steroid receptor covator-1 acvating protein-1 mediated transactions through Inteaction with the c-Jun and c-Fos Subunits. J Biol Chem
273:16651-16654 1998.

Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol
18:410-414, 2000.

Lindebro MC, Poellinger L, Whitelaw ML. Protein-protein interaction via PAS domains: role of the PAS domain in positive and negative regulation of the bHLH/PAS dioxin receptor-Arnt transcription factor
complex. EMBO J. 14 : 3528-3539, 1995.

Lissy NA, Davis PK, Irwin M, Kaelin WG, Dowdy SF. Different reglution of retinobkastoma tumor suppressor protein by G(1) cyclin-dependent kinase complexes in vivo. Mol Cell Biol 21:4773-4784,
2001.

Ma H, BaumannCT, Li H,Strahl BD, Rice R, Jelinek MA, Aswad DW, Allis AD, Hager GL, Stallcup MR. Hormone-dependent, CARM1-directed, arginine-specific methylation of histone H3 on a
steroid-regulated prometer Current biology 11:1981-1985, 2001.

Na SY, Lee SK, Han SJ, Choi HS, Im SY, Lee JW. Steroid receptor coactivator-1 interacts with the p50 subunit and coactivates nuclear factor kappaB-mediated transactivations. J Biol Chem 273:10831-10834, 1998.

Nagahara H, Vocero-Akbani AM, Synder EL, Ho A, Latham DG, Lissy NA, Becker-Hapak M, Ezhevsky SA, Dowdy SF. Transduction of full-length TAT fusion proteins into mammalian cells:TAT-p27kip1
induces cell migration. Nat Med 4:1449-1452, 1998.

Nagaya T, Madison LD, and Jameson JL. Thyroid hormone receptor mutants that cause resistance to thyroid hormone: evidance for receptor competition for DNA sequences in target genes. J Biol Chem 27:
13014-13019, 1992.

Onate SA, Boonyaratanakornkit V, Spencer TE, Tsai SY, Tsai MJ, Edwards DP, O'Malley BW. The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid
receptors. J Biol Chem 273:12101-12108, 1998.

Oňate SA, Tsai SY, Tsai MJ, and O’Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor
superfamily. Science 270: 1354-1357, 1995.

Rothbard JB, Garlington S, Lin Q, Kirschberg T, KrelderE, McGrane PL, Wender PA, Khavari PA. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation.
Nat Med 6:1253-1257, 2000.

Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. In vivo protein transduction:delivery of a biologically active protein into the mouse.
Science 285:1569-1572, 1999.

Severne Y, Wieland S, Schaffner W, and Rusconi S. Metal binding “ fnger “ structure in the glucocorticoid receptor defined by site directed
mutagenesis. EMBO J 7: 2503-2508, 1988.

Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, Mckenna NJ, Onete SA, Tsai SY, Tsai MJ, and O’Malley BW. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389 :
194-198,1997.

Torchilin VP, Rammohan R, Weissig V, Levchenko TS. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the precence of metabolic inhibitors. Proc Natl
Acad Sci USA 98:8786-8791, 2001.

Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010-16017, 1997.

Yen PM, Wilcox EC, Hayashi Y, Refetoff S, and Chin WW. Studies on the repression of basal trancription (silencing) by artifical and natural thyroid hormone receptor-b mutants. Endocrinology 136: 2845-2851,
1995.

Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steiman L, Rothbard JB. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake : peptoid molecular transporters. Proc
Natl Acad Sci UAS 2000. 97 : 13003-13008.

Wills KN, Atencio IA, Avanzini JB, Neuteboom S, Phelan A, Philopena J, Sutjipto S, Vaillancourt MT, Wen SF, Ralston RO et al. Intratumoral spread and increased efficacy of a p53-VP22 fusion protein expressed by
a recombinant adenovirus. J Virol 75:8733-8741, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 謝銘洋(民85)。教師、學生與學校之關係及其權利受侵害之救濟。教育資料與研究,10,62-63。
2. 蔡崇振(民86)。從兩個實例談校園危機處理。教育資料與研究,14,58-61。
3. 褚劍鴻(民84)。過失與信賴原則。法令月刊,第46卷第5期,3-9。
4. 楊佳元(民89)。論違反保護他人法律之侵權行為。月旦法學,58,116-120。
5. 傅木龍(民89)。學生權益維護之省思與展望。訓育研究,第39卷第2期,21-29。
6. 黃順顯(民90)。學校體育活動之運動傷害意外事件緊急處理模式。學校體育
7. 陳寶山(民86)。校園意外事件與校園安全。教育資料與研究,14,21-28。
8. 陳樸生(民80)。過失行為及其著手時點。法令月刊,第42卷第1期,3-6。
9. 陳世聰(民89)。終結校園悲劇—談學校工程安全與設備維護。師友月刊,393,
10. 唐璽惠(民87)。校園危機處理。學生輔導,58,44-57。
11. 唐慧文(民87)。談學校之危機處理—以北一女潑酸事件為例。學生輔導,58,
12. 孫本初(民86)。校園危機管理策略。教育資料與研究,14,11-20。
13. 洪嘉文(民89)。重視學校運動安全教育—風險管理在學校體育的策略應用。
14. 施致平(民90)。體育運動與法律問題。學校體育雙月刊,第11卷第3期,13-
15. 紀俊臣(民86)。校園危機處理之法律問題探討。教育資料與研究,14,3-10。