跳到主要內容

臺灣博碩士論文加值系統

(3.236.225.157) 您好!臺灣時間:2022/08/16 01:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳忠孝
研究生(外文):Chung-shiao Chen
論文名稱:銲錫合金機械性質之研究
論文名稱(外文):The Study of Mechanical Properties of Solder Alloys
指導教授:薛人愷
指導教授(外文):Ren-Kae Shiue
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:85
中文關鍵詞:無電鍍鎳層銲錫合金拉拔試驗
外文關鍵詞:solder alloyselectroless-nickel layerpull-off test
相關次數:
  • 被引用被引用:1
  • 點閱點閱:538
  • 評分評分:
  • 下載下載:132
  • 收藏至我的研究室書目清單書目收藏:3
從3C產品小型化的市場需求上看來,傳統銲錫合金將面臨高密度構裝上所帶來的使用環境,故可以預期未來對新一代銲錫合金可靠度的評估,將成為一重要議題。本研究的目的即在探討幾種工業上常用的銲錫合金,其強度及延性對溫度及應變速率的依存性,以做為後續研究參考資料。實驗中選用的六種合金:100Sn、100Pb、63Sn37Pb、96.5Sn3.5Ag、95Pb5Sn及92.5Pb5Sn2.5Ag,利用澆鑄方式製成拉伸試棒,試件分別在298K及373K二種溫度; 7.5mm/min及0.75mm/min二種夾頭移動率組合下進行試驗。藉由拉伸數據的分析及配合破壞面的描述,以了解其根本破壞的原因。結果顯示:所有試棒皆隨著溫度的上升及應變速率的減緩,其U.T.S.有不同程度的下降,溫度效應約在 45~60%之間,應變速率效應約在15~35%之間。整體而言,100Sn合金在四種組合條件中,其 U.T.S.約為100Pb合金的1.5倍;63Sn37Pb及96.5Sn3.5Ag兩合金,其U.T.S.則相當;95Pb5Sn及92.5Pb5Sn2.5Ag兩合金測試結果亦相差不大。另外,延性方面結果則較不具有規則性,但Ag元素的添加不利於合金之延展性。此外,本研究亦在銅板上以無電鍍鎳方式覆上厚度不等的鎳層,將63Sn37Pb合金試片製作於該板上,利用單軸向應力拉開銲錫與無電鍍鎳板間的鍵結,以評估其可靠度。測試結果發現,不論3~5μm或11~15μm無電鍍鎳層,在常溫及373K儲存180小時兩種測試條件下,其鍵結強度均無太大的變化,皆維持在20~25MPa之間,且破壞皆在銲錫端。經高溫儲存後之拉拔試片,在銲錫與基板間,並沒有偵測到銅原子的存在,可見本實驗條件下,鍍鎳層確實發揮了擴散障礙的效應。
Based on the demand of miniaturization of 3C products, it is expected that traditional solder alloys will be applied in the environment of high density packaging, and the reliability of new generation solder alloys will become the issues in the near future. The purpose of this study is focused on the dependence between strength as well as ductility of several commonly used solder alloys and temperature as well as strain rate for future follow-up research. Six solder alloys, 100Sn, 100Pb, 63Sn37Pb, 96.5Sn3.5Ag, 95Pb5Sn and 92.5Pb5Sn2.5Ag, were chosen in the experiment, and tensile test specimens were made by casting. Monotonic stresses with different combinations of both temperature (298oK and 373oK) and strain rate (7.5mm/min and 0.75mm/min) were performed, and the failure analysis was aid by analyzing tensile test data as well as fractured surfaces. Experimental results demonstrate that the ultimate tensile strength is decreased with increasing temperature (ranging from 45% to 60%) and decreasing strain rate (ranging from 15% to 35%). In summary, the tensile strength of the 100Sn is about 1.5 times than that of 100Pb. Both 63Sn37Pb and 96.5Sn3.5Ag alloys are comparable in UTS, and UTSs of both 95Pb5Sn and 92.5Pb5Sn2.5Ag alloys also shows no big difference. Additionally, the values of ductility displays little regularity, and the addition of Ag deteriorates the ductility of the alloy. Further study was made by casting the solder alloy on the Cu substrate coated by the electroless-nickel with various thicknesses in order to estimate the bonding strength. Pull-off test was performed in order to evaluate its reliability. It is found that the bonding strengths approximately range between 20 and 25 MPa regardless of the variation in the thickness (3-5�慆 or 11-15�慆) of electroless-nickel layer aged at 375oK for 180 hours. All the specimens are fractured at the solder end, and there is no detectable Cu in the interface. Consequently, the electroless-nickel layer can actually provide the effect of diffusion barrier in the experiment.
目錄
頁數
摘要……………………………....………….…………………...…Ⅱ
英文摘要……………………………....……….…………………...Ⅳ
目錄………………………………………....…….………………...Ⅵ
表目錄………………………………………………….....………...Ⅷ
圖目錄…………………………………………………………........Ⅸ

第一章 簡介……...................……………..….…......…1

第二章 文獻回顧 …………..................…….…........…3

2-1 銲接技術之分類…………………....……………….…......…3
2-2 銲錫之基本性 ..........................…............3
2-3 銲錫與電子構裝製程………………………………….……......4
2-3.1 軟銲的方法.......................................4
2-3.2 電子構裝製程.....................................5
2-4 銲錫之可銲性(Solderability)...............……….......7
2-5 銲錫之可靠度(Reliability)… ………..…….……........…9
2-6 銲錫之發展方................................….........9
2-6.1 傳導黏結性材料(Conducting Adhesive Materials)...10
2-6.2 無鉛銲錫之取代(Replacement of Lead-free solder).10
2-6.3 複合材料(Composite).............................15
2-6.4 多成份無鉛銲錫..................................16
2-7 銲錫機械特性之研究....................................18
2-8 銲錫潤溼特性之研究..................................…22
2-9 銲錫之研究對象........................................23

第三章 實驗設備及方法……….........…….......…………...32

3-1 實驗材料…………...…………………………………...…....32
3-2 實驗參數……………….....…….………………………….….32
3-3 澆鑄實驗(試片準備)………….....…………...………………33
3-4 金相組織觀察………………….…….....……..………………34
3-5 慢速率拉伸試驗……………….…………….......……..……34
3-6 拉拔(Pull-off)試驗……………………………....……………35
3-7 破斷面觀察…………………….……………………….....…..36

第四章 結果與討論….…..…….....…...………………..……..43

4-1 金相組織觀察………...………….………………….....…….43
4-2 試件拉伸機械性能……….....…….…………………………..43
4-3 拉伸試件巨觀破斷面觀察……....………………..……...….46
4-4 試件SEM破斷面觀察………….……......……………....……47
4-5 銲錫與無電鍍鎳板鍵結性能……………….....…..………….49

第五章 結論……..….………………...……………...…………..79

第六章 參考資料.........................................…81


表目錄

表2.1 銲接技術之分類......................................25
表3.1 銲錫之基本物理性質................................…37

圖目錄

圖2.1 微電子產業製程....................................…26
圖2.2 手銲示意圖....................................……..27
圖2.3 波銲示意圖.................................……..….27
圖2.4 (a)PTH與(b)SMT引腳接合外觀圖………..….............28
圖2.5 三種最常見的晶片接合於電路板的方式……………......…28
圖2.6 液體在固體表面之潤溼行為............................29
圖2.7 玻璃浸入(a)水(b)水銀中..............................29
圖2.8 傳導黏結性材料......................................30
圖2.9 熔融銲錫中的散佈型顆粒(a)一般混合 (b)外在磁場作用下,
呈柱狀結構分佈 (c)外在磁場作用下,呈三維網狀結構分佈31
圖3.1 實驗流程圖.................................………….38
圖3.2 Sn-Pb合金相圖.................................……..39
圖3.3 Sn-Ag合金相圖..................................…….39
圖3.4 Pb-Sn-Ag合金相圖....................................40
圖3.5 慢速率拉伸試驗機....................................41
圖3.6 拉拔(Pull-off)試片.................................42
圖4.1 63Sn37Pb金相組織圖..................................52
圖4.2 96.5Sn3.5Ag金相組織圖.........................…....52
圖4.3 95Pb5Sn金相組織圖...................................52
圖4.4 92.5Pb5Sn2.5Ag金相組織圖............................52
圖4.5 100Sn合金之強度對溫度及應變速率的依存性..........….53
圖4.6 100Sn合金之延性對溫度及應變速率的依存性.............53
圖4.7 100Sn在不同溫度及應變速率組合下之應力-應變曲線..……54
圖4.8 100Pb合金之強度對溫度及應變速率的依存性.............55
圖4.9 100Pb合金之延性對溫度及應變速率的依存性.............55
圖4.10 100Pb合金在不同溫度及應變速率組合下之應力-應變曲線.56
圖4.11 63Sn37Pb之強度對溫度及應變速率的依存性.............57
圖4.12 63Sn37Pb之延性對溫度及應變速率的依存性.............57
圖4.13 63Sn37Pb在不同溫度及應變速率組合下之應力-應變曲線..58
圖4.14 96.5Sn3.5Ag之強度對溫度及應變速率的依存性..........59
圖4.15 96.5Sn3.5Ag之延性對溫度及應變速率的依存性..........59
圖4.16 96.5Sn3.5Ag在不同溫度及應變速率組合下之應力-應變曲線
...................................................60
圖4.17 95Pb5Sn合金之強度對溫度及應變速率的依存性..........61
圖4.18 95Pb5Sn合金之延性對溫度及應變速率的依存性..........61
圖4.19 95Pb5Sn合金在不同溫度及應變速率組合下之應力-應變曲線
...................................................62
圖4.20 92.5Pb5Sn2.5Ag合金之強度對溫度及應變速率的依存性...63
圖4.21 92.5Pb5Sn2.5Ag合金之延性對溫度及應變速率的依存性...63
圖4.22 92.5Pb5Sn2.5Ag合金在不同溫度及應變速率組合下之應力-
應變曲線...........................................64
圖4.23 100Sn合金之巨觀拉伸破斷特徵(a)373K at 0.75mm/min (b)
373K at 7.5mm/min (c)298K at 0.75mm/min (d)298K at
7.5mm/min..........................................65
圖4.24 100Pb合金之巨觀拉伸破斷特徵(a)373K at 0.75mm/min (b)
373K at 7.5mm/min (c)298K at 0.75mm/min (d)298K at
7.5mm/min..........................................65
圖4.25 63Sn37Pb合金之巨觀拉伸破斷特徵(a)373K at 0.75mm/min
(b)373K at 7.5mm/min (c)298K at 0.75mm/min (d)298K
at 7.5mm/min…….......……………………………………66
圖4.26 96.5Sn3.5Pb合金之巨觀拉伸破斷特徵(a)373K at 0.75
mm/min (b)373K at 7.5mm/min (c)298K at 0.75mm/min
(d) 298K at 7.5mm/min...............................66
圖4.27 95Pb5Sn合金之巨觀拉伸破斷特徵(a)373K at 0.75mm/min
(b)373K at 7.5mm/min (c)298K at 0.75mm/min (d)298K at
7.5mm/min…….........………………………………………67
圖4.28 92.5Pb5Sn2.5Ag合金之巨觀拉伸破斷特徵(a)373K at 0.75
mm/min (b)373K at 7.5mm/min (c)298K at 0.75mm/min (d
)298K at 7.5mm/min………………………………………….67
圖4.29 63Sn37Pb合金之拉伸破斷面(a)298K at 7.5mm/min (b)298K
at 0.75mm/min (c)373K at 7.5mm/min (d)373K at 0.75
mm/min…...........................................68
圖4.30 96.5Sn3.5Ag合金之拉伸破斷面(a)298K at 7.5mm/min (b)
298K at 0.75mm/min (c)373K at 7.5mm/min (d)373K at
0.75mm/min.........................................69
圖4.31 96.5Sn3.5Ag合金(a)澆鑄試片之SEM組織 (b)為(a)圖中箭頭
所指處之EDX分析…………........................……70
圖4.32 96.5Sn3.5Ag合金破斷面SEM照片…………………………….71
圖4.33 95Pb5Sn合金之拉伸破斷面(a)298K at 7.5mm/min (b)298K
at 0.75mm/min (c)373K at 7.5mm/min (d)373K at 0.75
mm/min ............................................72
圖4.34 92.5Pb5Sn2.5Ag合金之拉伸破斷面(a)298K at 7.5mm/min
(b)298K at 0.75mm/min (c)373K at 7.5mm/min (d)373K
at 0.75mm/min………..............……………………..73
圖4.35 拉拔應力對鍍鎳層厚度及時效處理的依存性………….....74
圖4.36 拉拔試驗後,無電鍍鎳板上的破壞組織(a)3~5μm Ni/P (b
)11~15μm Ni/P (c)3~5μm Ni/P高溫儲存180小時(d)11
~5μm Ni/P高溫儲存180小時………………………….....75
圖4.37 63Sn37Pb合金軟銲於3~5μm無電鍍鎳板後之橫斷面顯微組織
(a)1000倍 (b)4000倍………………………………………..76
圖4.38 圖4.37中A點之EDX分析…………………………….…………77
圖4.39 圖4.37中B點之EDX分析……………………………….……..77
圖4.40 63Sn37Pb合金軟銲於3~5μm無電鍍鎳板,並經時效處理後
之橫斷面顯微組織(a)1000倍 (b)4000倍……............78
1. 載萍平, “共晶原理及其在連接方面的應用”, 電路板會刊, 第十二期, PP.4-21
2. 陳琪, “銲接在電子工業上的應用”, 銲接與切割, 第三卷, 第八期, 87年5月, PP26-32
3. “Brazing and Soldering”, ASM Handbook, Vol. 6, pp. 109-137
4. 陳信文, “電子構裝介紹”, 化工技術, 第二卷, 第七期, 83年7月
5. 謝宗雍, “電子構裝技術簡介”, 電子月刊, 第三卷, 第七期, 86年7月, PP57-77
6. 林光隆, “電子構裝覆晶接合技術”, 科儀新知, 第二十卷, 第二期, 75, 1998
7. 劉漢誠著, 趙建基譯, “球腳格狀陣列封裝技術”, 鴻海精密發行, 1997
8. G. Humpston and D. M. Jacobson, ”Principles of Soldering and Brazing”, Materials Park, OH, ASM International, 1993
9. Walter L. Winterbottom, “Converting to Lead-Free Solders: An Automotive Industry Perspective”, JOM, July, 1993, pp20-24
10. SUNG K. KANG and S. PURUSHOTHAMAN, “Development of Conducting Adhesive Materials, Vol. 28, No. 11, 1999, pp.1314-1317
11. E. P. WOOD and K. L. NIMMO, “In search of New Lead-Free Electronic Solders”, Journal of Electronic Materials, Vol.23, No.8, 1994, pp709-713
12. SUNG K. KANG, “Lead-Free Solders for Electronic Packaging”, Journal of Electronic Materials, Vol. 23, NO. 8, 1994, pp.701-707
13. WENG YANG and ROBERT W. MESSLER and JR., “Microstructure Evolution of Eutectic Sn-Ag Solder Joints”, Journal of Electronic Materials, Vol. 23, No. 8, 1994, pp.765-772
14. JUDITH GLAZER, “Microstructure and Mechanical Properties of Pb-Free Solder Alloys for Low-Cost Electronic Assembly: A Review”, Journal of Electronic Materials, Vol. 23, No. 8, 1994, pp.693-699
15. D. MITLIN, C. H. RAEDER and R.W. MESSLER, “Solid Creep Behavior of Sn-xBi Alloys”, Metallurgical and Materials Transactions A”, Vol. 30A, 1999, pp115-122
16. Pattanaik and V. Raman, “Deformation and fracture of Bismuth-Tin Eutectic Solder”, Materials Development in Microelectronic Packing, ed P. J. Singh(Materials Park, OH: ASM, 1991)
17. M. McCormack and S. Jin, “Progress in the Design of New Lead-Free Solder Alloys”, JOM, July, 1993, pp36-40
18. M. McCormack and S. Jin, “Dispersoid Additions to a Pb-Free Solder for Suppression of Microstructural Coarsening:, Journal of Electronic Materials, vol. 232, No. 8, 1994, pp.735-739
19. M. E. LOOMANS, S. VAYNMAN, G. GHOSH and M. E. FINE, “Investigation of Multi-Component Lead-Free Solders”, Journal of electronic Materials, Vol. 23, No. 8, 1994, pp.741-746
20. M. McCormack and S. Jin, “New, Lead-Free Solders”, Journal of electronic Materials, Vol. 23, No. 7, 1994, pp.635-640
21. G. E. Dieter, “Mechanical Metallurgy”, McGraw-Hill, New York, 1988
1. D. R. FREAR, J. B. POSTHILL and J. W. MORRIS, “the Microstructural Details of β-Sn Precipitation in a 5Sn-95Pb Solder alloy”, Metallurgical Transactions A, Vol. 20A, 1989, pp.1325-1333
23. M. Cole and T. Caulfield, “Constant Strain Rate Tensile Properties of Various Lead Based Solder Alloys at 0, 50 and 100℃”, Scripta Metallurgica et Materialia, Vol. 27, 1992, pp. 903-908
24. P. T. VIANCO, K. L. ERICKSON and P. L. HOPKINS, “Solid State Intermetallic Compound Growth Between Copper and High Temperature, Tin-Rich Solders-PartⅠ: Experimental Analysis”, Journal of Electronic Materials, Vol. 23, No. 8, 1994, pp.721-727
25. Rodney J. McCabe and Morris E. fine, :The Creep Properties of Precipitation-Strengthened Tin-Based Alloys”, JOM, June, 2000, pp33-35
26. S. Choi, J. G. Lee, F. Guo, T. R. Bieler, “Creep properties of Sn-Ag solder joints containing intermetallic particles”, JOM, No.6, Vol. 53, 2001, pp. 22
27. F. GUO, J. P. LUCAS and K. N. SUBRAMANIAN, “Creep Behavior in Cu and Ag particle-reinforced composite and eutectic Sn-3.5Ag and Sn-4.0Ag-0.5Cu non-composite solder joints”, “Journal of Materials Science: Materials in Electronics, Vol. 12, 2001, pp27-35
28. A. J. CROCKER and M. WILSON, “Microhardness in PbTe and related alloys”, Journal of Materials Science, 13, 1978, pp833-842
29. NOBORU WADE TATSUO AKUZAWA et al., “Effect of Microalloying on the Creep Strength and Microstructure of an Eutectic Sn-Pb Solder Alloy”, Journal of Electronic Materials, Vol. 28, No. 11, 1999, pp.1286-1289
30. JEFF SIGELKI, S. CHOI, K. N. SUBRAMANIAN, JAMES P. LUCAS and T. R. BIELER, “Effect of Cooling Rate on Microstructure and Mechanical Properties of Eutectic Sn-Ag Solder Joints with and without Intentionally Incorporated Cu6Sn5 Reinforcements”, Journal of electronic Materials, Vol. 28, No. 11, 1999, pp.1184-1188
31. K. H. PRAKASH and T. SRITHARAN, “Interface Reaction between Copper and Molten Tin-Lead Solders”, Acta Materials, Vol. 49, No. 13, 2001, pp. 2481-2489
32. LENORA QUAN, DARREL FREAR, DENNIS GRIVAS and J. W. MORRIS JR, “Tensile Behavior of Pb-Sn Solder/Cu Joints”, Journal of Electronic Materials, Vol. 16, No. 3, 1987, pp.203-208
33. Vianco Paul J, “Determining the Mechanical Strength of Soldered Joints”, Welding Journal, Vol. 77, No. 10, pp.49-52
34. J. W. Jang, A. P. De Silva, T. Y. Lee, J. K. Lin and D. R. Frear, “Direct Correlation between Microstructure and Mechanical Tensile Properties in Pb-free Solders and Eutectic SnPb Solder for Flip Chip Technology”, Applied Physics Letters, Vol. 79, No. 4, 2001, pp. 482-484
35. I. Karakaya and W. T. Thompson, “Binary Alloy Phase Diagrams”
36. P. Villars, A. Prince and H. Okamoto, “Handbook of Ternary Alloy Phase Diagrams”
37. K. N. SUBRAMNIAN, A. Lee, S. Choi and P. Sonje, “Material Issues in Electronic Interconnects and Packaging”, Journal of Electronic Materials, Vol. 30, No. 4, 2001, pp. 372-378
38. K. N. SUBRAMNIAN, T. R. BIELER, J. P. LUCAS, “Microstructural Engineering of Solders”, Journal of Electronic Materials, Vol. 28, No. 11, 1999, pp. 1176-1183
39. C. E. Ho, S. Y. Tsai and C. R. Kao, “Reaction of Solder with Ni/Au Metallization for Electronic Packages during Reflow Soldering”, IEEE Transactions on Advanced Packaging, Vol. 24, No. 4, 2001
40. C. J. Chen and K. L. Lin, “The Reactions between Electroless Ni-Cu-P Deposit and 63Sn37Pb Flip Chip Solder Bumps during Reflow”, Journal of Electronic Materials, Vol. 29, No. 8, 2000
41. C. E. Ho, W. T. Chen and C. R. Kao, “Interactions between Solder and Metallization during Long-Term Aging of Advanced Microelectronic Packages”, Journal of Electronic Materials, Vol. 30, No. 4, 2001
42. A. Zribi et al.,”Solder Metallization Interdiffusion in Microelectronic Interconnects”, IEEE Transactions on Components and Packaging Technologies, Vol. 23, No. 2, 2000
43. MICHAEL RAJ MARKS, “Effect of Burn-in on Shear Strength of 63Sn37Pb Solder Joints on an Au/Ni/Cu Substrate”, Journal of Electronic Materials, Vol. 31, No.4, 2002
44. T. M. KORHONEN et al., “Reactions of Lead-Free Solders with CuNi Metallizations, “Journal of Electronic Materials, Vol. 29, NO. 10, 2000, pp. 1194-1199
45. D. R. Frear et al., “Pb-Free Solders for Flip-Chip Interconnects”, JOM, Research Summary, June, 2001, pp.28-38
46. Y. C. Chan, Alex C. K. So and J. K. L. Lai, “Growth Kinetic Studies of Cu-Sn Intermetallic Compound and Its Effect on Shear Strength of LCCC SMT Solder Joints”, Materials Science and Engineering B, NO. 55, 1998, pp. 5-13
47. MICHAEL RAJ MARKS, “Effect of Burn-in on Shear Strength of 63Sn37Pb Solder Joints on an Au/Ni/Cu Substrate”, Journal of Electronic Materials, Vol. 31, No.4, 2002
48. K. C. Hung et al., “Metallurgical Reaction and Mechanical Strength of Electroless Ni-P Solder Joints for Advanced Packaging applications”, Journal of Materials Science: Materials in Electronics, Vol. 11, 2000, pp. 587-593
49.B. S Chiou, J. H. Chang and J. G Duh, “Metallurgical Reactions at the interface of SnPb Solder and Electroless Copper-Plated ALN Substrate”, IEEE Transaction on Component, Packaging and manufacturing Technology: Part B, Vol. 18, No. 3, 1995, pp. 537-542
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top