跳到主要內容

臺灣博碩士論文加值系統

(3.238.225.8) 您好!臺灣時間:2022/08/09 01:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭浩志
研究生(外文):Hao-Chih Cheng
論文名稱:具有或然性位置錯誤率的無線資訊服務之排程法則研究
論文名稱(外文):Scheduling Disciplines in Cellular Data Services with Probabilistic Location Errors
指導教授:陳俊良陳俊良引用關係
指導教授(外文):Jiann-Liang Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:65
中文關鍵詞:阻塞狀態效能資源保留權值公平佇列差別性品質確保細胞結構資訊服務排程法則
外文關鍵詞:blocking performanceresource reservationweighted fair queuing (WFQ)differentiated QoScellular data serviceScheduling discipline
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:1
高速網路的來臨為需要嚴格效能需求的應用程式帶來了新契機。並不難預見的,為即時傳輸的流量交通提供一個穩定的網路以執行高需求服務是勢在必行。因此,在未來整合服務網路(Integrated Service Network)必須提供服務給各種型式的應用以及必需能夠提供服務品質的確保給即時服務的連結。
然而,因為無線網路的獨特問題---位置相關錯誤(Location-Dependent Error),使得服務品質的確保並不容易在無線網路上實現。以在無線行動網路上尋求一個高效率且公平的排程法則為主題的研究是非常具有挑戰性的。曾有許多著名的研究鑽研這個主題,例如CSDPS法則、IWFQ法則、CIF-Q法則與SBFA法則等。他們都可以適用於具有位置相關錯誤率的無線網路環境,但卻各具不同的訴求;有些強調公平、有些可產生較好的效能、有些可以運作溫和。無庸置疑的,這些研究每一種都有其優異之處,故很難斷言何種排程法則優於其他的法則。但只要對它們作深入地研究,並不難發現以上所提到的各種排程法則除了SBFA法則外並不容易在現實的環境裡實作。因此,本研究主要目的即研究出一套可實作的法則。
為了在高資料錯誤率的環境中提供不同服務品質確保的資料服務,我們發展出一種將原有WFQ排程法則延伸成可以或然性地調整權值的PWFQ (Probabilistic Weighted Fair Queueing)排程法則。PWFQ排程法則是基於等效性的概念將因位置相關錯誤所得來的罰鍰拿來作事後的補償。從實驗的結果顯示,在即時的傳輸交通流方面,PWFQ方案的效能比那些已存在的方案更要來得穩定。雖然為了達到這些,PWFQ排程法則很遺憾的有損失一些的效能,但它卻使得公平的傳輸比其他的排程法則更為可行。
The coming of high-speed networking brings a juncture for new applications that need strict performance requirements. It is not difficult to prevision that provide a steady network for real-time transmission traffic to implement high requirements service is imperative. Thus, an integrated service network must serve all kinds of applications and be able to provide quality-of-service (QoS) guarantees to real-time session in the future.
However, QoS guarantees are not easily implemented in wireless network because of the unique problems in wireless channels such as location-dependent. Subjecting an efficient and fair resource scheduler to wireless mobile networks is a challenging problem. There are several famous researches make a thorough study of this topic, such as CSDPS, IWFQ, CIF-Q and SBFA strategies. They can apply to the wireless network environment, which was suffered location-dependent error, but all of them content different request; some emphasize equity, some make high efficacy and some desire gracefully work. It is beyond doubt that each one of these researches has its advantage. So, no one could say which one was better than another. But, if we make a deeply study on them; it’s not hard to see that the schedulers mentioned above are not easy to be implemented in real environment except SBFA. Thus, the aim of this thesis is researching a discipline that could be realized easily.
To provide cellular data services with differentiated QoS in a high data error-rate environment, a PWFQ (Probabilistic Weighted Fair Queueing) scheduling discipline, which extends WFQ scheme via probabilistic weight adjustments, was developed. PWFQ discipline compensated for the penalty derived from the location-dependent errors using the equivalent efficiency concept. The experimental results show that the system efficiency of PWFQ scheme was more stable than those of these existing schemes in real-time traffic flows. Though it is a pity that PWFQ discipline expense some transmission efficiency to archive it, it makes “fair transmission” much more practicable than existing ones.
中文摘要 i
Abstract ii
Dedication iv
Acknowledgements v
Contents vi
List of Figures viii
List of Tables ix
Chapter 1 Introduction 1
1.1 Necessity of Performance Guarantee 1
1.2 Characteristics of Wireless Communications 2
1.3 Outline of The Thesis 5
Chapter 2 Background Knowledge 6
2.1 Architecture and Models 6
2.1.1 Cellular Service Architecture 6
2.1.2 Network and Service Models 8
2.2 Flow Control in Integrated Services 11
2.2.1 Generalized Processor Sharing (GPS) 11
2.2.2 Weighted Fair Queueing (WFQ) 13
2.3 Packet Fair Queueing Algorithms 16
2.3.1 Channel State Dependent Packet Scheduling (CSDPS) 16
2.3.2 Channel State Dependent Packet Scheduling Combining Class-Base Queueing (CSDPS+CBQ) 17
2.3.3 Idealized Wireless Fair Queueing (IWFQ) 19
2.3.4 Channel-Condition Independent Packet Fair Queueing (CIF-Q) 22
2.3.5 Server-Base Fair Approach (SBFA) 27
Chapter 3 PWFQ Discipline 30
3.1 System Models 31
3.2 Sincere Fair 31
3.3 Average Acceptance Rate 34
3.4 Discipline 36
3.4.1 Error Free Environment 37
3.4.2 Location-Dependent Error Environment 37
3.4.3 Guaranteed QoS Services 38
3.4.4 Best-effort Services 38
Chapter 4 Performance Analysis 40
4.1 Simulation Scheme 40
4.1.1 Efficiency Analysis for QoS Guarantee Services 40
4.1.2 Average AI Analysis 41
4.2 Simulation Results 42
4.3 Compare with Other Schemes 44
Chapter 5 Conclusion and Future Work 50
5.1 Research Summary 50
5.2 Future Work 51
Bibliography R-1
[1] A. Fraser, “Designing a public data network,” IEEE Commun. Magazine, vol. 30, pp. 31-35, October, 1991.
[2] H. Zhang, “Service Disciplines for Guaranteed Performance Service in Packet-Switching Networks,” Proceedings of the IEEE, vol. 83, no. 10, pp. 1374-1396, October 1995.
[3] A. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow control in integrated services networks: The single-node case,” IEEE/ACM Trans. Networking, vol. 1, pp. 334-357, June 1993.
[4] M. H. Hou and C. Chen, “Service Disciplines for Guaranteed Performance Service,” Proceedings of the 4th International Workshop on Real-Time Computing Systems and Applications (RTCSA '97), IEEE, 1997.
[5] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing algorithm,” in Proc. ACM SIGCOMM’89, 1989, pp.3-12.
[6] L. Zhang, “Virtual clock: A new traffic control algorithm for packet switching networks,” in Proc. ACM SIGCOMM’90, September 1990, pp.19-29.
[7] D. Kandlur, K. Shin, and D. Ferrari, “Real-time communication in multi-hop networks,” in Proc. 11th Int. Conf. Distributed Computer System, May 1991, pp. 300-307.
[8] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing algorithm,” in Proc. ACM SIGCOMM Computer Communication Review, vol.19, no.4, pp.1-12, September 1989.
[9] A. Parekh, “A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks,” Ph.D. Thesis, MIT Laboratory for Information and Decision Systems, Technical Report LIDS-TR-2089, 1992.
[10] T. Nandagopal, S. Lu, and V. Bharghavan, “A unified architecture for the design and evaluation of wireless fair queueing algorithms,” ACM MOBICOM’99, March 1999.
[11] Y. Cao and V. O. K. Li, Fellow, IEEE, “Scheduling Algorithms in Broad-Band Wireless Networks,” Proceedings of The IEEE, vol.89, no. 1, pp. 76-87, January 2001.
[12] A. Bakre and B. R. Badrinath, “I-TCP: Indirect TCP for mobile hosts,“ Proceedings of the 15th International Conference on Distributed Computing System, May 1995, pp. 136-143.
[13] R. Yavatkar and N. Bhagawat, “Improving end-to-end performance of TCP over mobile internetworks.” in Mobile ‘94 Workshop on Mobile Computing Systems and Applications, December 1994.
[14] H. Balakrishan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A comparison of mechanisms for improving TCP performance over wireless links,” IEEE/ACM Trans. Networking, December 1997.
[15] A. DeSimone, M. C. Chuah, and O.C. Yue, “Throughput performance pf transport-layer protocols over wireless LANs.” in Proc. IEEE GLOBECOM 1993, December 1993. pp. 542-549.
[16] D. Eckhardt and P. Steenkiste, “Improving Wireless LAN Performance via Adaptive Local Error Control,” in Sixth International Conference on Network Protocols, Austin, TX, October 1998, IEEE Computer Society.
[17] P. Lettien and M. B. Srivastava, “Adaptive frame length control for improving wireless link throughput, range, and energy efficiency,” in Proc. IEEE INFOCOM ’98, San Francisco. CA, March 1998, pp. 564-571.
[18] S. Lu, V. Bharghavan, and R. Srikant, “Fair Scheduling in wireless packet networks,” in Proc. of ACM SIGCOMM ’97. September 1997, IEEE Computer Society.
[19] T. S. E. Ng, I. Stoica, and H. Zhang, “Packet fair queueing algorithms for wireless networks with location-dependent errors,” in Proc. INFOCOMM ’98, 1998, pp. 1103-1111, IEEE Communication Society.
[20] D. Eckhardt and P. Steenkiste, “A Trace-base Evaluation of Adaptive Error Correction for a Wireless Local Area Network,” Mobile Networks and Application (MONET), 1999. Special Issue on Adaptive Mobile Networking and Computing.
[21] D. A. Eckhardt and P. Steenkiste, “Effort-limited fair (ELF) Scheduling for Wireless Networks,” in Proc. IEEE INFOCOMM 2000.
[22] B.D. Noble, M. Satyanarayanan, G.T. Nguyen, and R.H. Katz, “Trace-based Mobile Network Emulation,” in Proc. of ACM SIGCOMM’97, pp. 1-11, France, September 1997.
[23] D.A. Eckhardt and P. Steenkiste, “Effort-limited Fair (ELF) Scheduling for Wireless Networks,” in Proc. IEEE Infocom 2000. (CD-Version)
[24] S. Choi and K.G. Shin, “An Uplink CDMA System Architecture with Diverse QoS Guarantees for Heterogeneous Traffic” IEEE/ACM Trans. Networking, vol.7, no. 5, pp. 616-628, 1999.
[25] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An Architecture for Differentiated Service,” RFC2475, December 1998.
[26] Y.B. Lin and I. Chlamtac, “Wireless and Mobile Network Architectures,” Wiley, 2000.
[27] U. Black, Mobile & Wireless Networks, Prentice Hall PTR, 1999.
[28] V. Bharghavan, S. Lu, and T. Nandagopal, “Fair Queueing in Wireless Networks: Issues and Approaches,” in Proc. IEEE Personal Communications, February 1999.
[29] A. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow control in integrated services networks: The mutiple-node case,” IEEE/ACM Trans. Networking, vol. 2, no, 2, pp. 137-150, April 1994.
[30] S. Lu, T. Nandagopal, and V. Bharghavan, “Fair Scheduling in Wireless Packet Networks.” ACM MOBICOM, October 1998.
[31] P. Bhagwat, A. Krishna, and S. Tripathi, “Enhancing throughput over wireless LAN's using channel state dependent packet scheduling,” in Proc. INFOCOM96, Mar 1996, pp. 1133-1140.
[32] S. Floyd and V. Jacobson, “Link-sharing and resource management models for packet networks,” IEEE/ACM Trans. Networking, vol. 3, pp. 365-386, August 1995.
[33] C. Fragouli, V. Sivaraman, and M. Srivastava, “Controlled multimedia wireless link sharing via enhanced class-based queuing with channel-state depenudent packet scheduling,” in Proc. INFOCOM’98, vol. 2, Mar. 1998, pp. 572-580.
[34] IEEE Standard for Wireless LAN Medium Access Control (MAC) and (PHY) Specifications, 802.11, November 1997.
[35] S. Lu and V. Bharghavan, "Fair Scheduling in Wireless Packet Networks." IEEE/ACM Trans. Networking, vol. 7, no. 4 pp. 473-489, 1999
[36] P. Goyal, H. M. Vin, and H. Chen, “Stan-time fair queueing: A scheduling algorithm for integrated services.” in Proc. ACM SIGCOMM’96, Palo Alto, CA, Augusr 1996, pp 157-168.
[37] T. S. E. Ng, I. Stoica, and H. Zhang, “Packet fair queueing algorithms for wireless networks with location-dependent errors,” Carnegie Mellon Univ. March 1998,
[Online]. Available: ftp://ftp.cs.cmu.edu/user/hzhang/NFOCOM98at.ps.Z
[38] P. Ramanathan and P. Agrawal, “Adapting packet fair queueing algorithms to wireless networks,” ACM/IEEE MOBICOM’98, Dallas, TX, pp. 1-9.
[39] I. Stoica, H. Zhang, and T. S. E. Ng, “A hierarchical fair service curve algorithm for link-sharing, real-time, and priority services,” in Proc. ACM SIGCOMM’97, September 1997, pp. 249-262.
[40] A.G. Garry, “Cellular Communications Worldwide Market Development,” Artech House, 1998.
[41] J.Y. Jeng and Y.B. Lin, “Equal Resource Sharing Scheduling for PCS Data Services,” Wireless Networks, vol. 5, no.1, pp. 41-53, January 1999.
[42] Monte Carlo algorithm.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top