跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/26 03:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳王展
研究生(外文):Wang-Chan Chen
論文名稱:具背閘極調整性的低功率2.4GHzCMOS壓控振盪器之設計
論文名稱(外文):The Design of Low Power 2.4GHz CMOS VCOs with Back-gate Tuning
指導教授:翁若敏
指導教授(外文):Ro-Min Weng
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:64
中文關鍵詞:壓控振盪器
外文關鍵詞:VCO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
由於行動通訊的重要性日漸提升,於是對無線相關電路的需要也自然而然地增加。
而其中一個隨之而來,對無線收發系統設計的主要挑戰為本地振盪訊號。

在這篇論文中,使用具一層多晶矽和六層金屬層0.18亳微米的互補式金氧半矽製作模型,
來模擬所提出電路的性能。而所提出的壓控振盪器電路使用中空式的方型平面螺旋
電感,且朝著低相位雜訊和低功率消耗來設計。經Cadence中的SpectreRF電路模擬軟體
的驗證,本論文所提出的新式電路的確能達成這樣的要求。

在論文中會對提出的低電壓、低功率、低相位雜訊的互補式金氧半單石壓控振盪器做詳
實的描述。這個壓控振盪器建立在具傳統電感-電容槽的負電阻架構上,且使用新式的
背閘極頻率調整電路。它操作在2.4兆赫茲的頻率,且在0.85伏特的電壓下消耗功率僅
有4.6亳瓦。而提出的壓控振盪器在距2.4兆赫茲的載波頻率3百萬赫茲時,相位雜訊
在-132dBc/Hz。
Because the importance of the mobile communication is growing, the demand for
wireless electronics increases. One of the major challenges in the design of the
transceiver system is the frequency synthesis of the local oscillator(LO) signal.
In this thesis, the model of a standard 0.18 µm silicon CMOS process with
single poly and six metal layers is used to verify the proposed work. The design is
done toward the goal of low phase noise and low power consumption. The VCO is
implemented by using the hollow-coil square spiral inductor. From the simulation
results with Cadence SpectreRF, the proposed VCO can do a good job.
A novel low-voltage, low-power, low-phase noise, and CMOS monolithic voltagecontrolled
oscillator (VCO) is described. The oscillator is based upon the classic
LC-tank negative-resistance topology with a new back-gate tuning method. It operates
at the 2.4 GHz while consuming only 4.6mW from 0.85V power supply. The
VCO’s phase noise level is -132 dBc/Hz at 3MHz offset from a 2.4 GHz carrier
with a spiral inductor.
誌謝 i
中文摘要 ii
Abstract iii
List of Figures vi
List of Tables viii
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization of This Thesis . . . . . . . . . . . . . . . . . . . . . . 2
2 The Oscillator Design Concepts 4
2.1 Oscillator Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 The Hajimiri Model: A Time-Varying Phase Noise Theory . 6
2.2.2 Phase Noise Mechanisms: In a Feedback System . . . . . . 12
2.3 Resonatorless Oscillators . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 LC-tank Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Basic Topologies . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Monolithic Inductors . . . . . . . . . . . . . . . . . . . . . 24
3 Design of the Voltage Controlled Oscillators 29
3.1 Tuning Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.1 MOS Varactors . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Junction Varactors . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 Back-Gate Tuning . . . . . . . . . . . . . . . . . . . . . . 36
3.2 VCO Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 Ring Oscillators . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Negative-Conductance Oscillators . . . . . . . . . . . . . . 39
3.3 Quadrature Output . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4 The Proposed VCO and Simulation Results 44
4.1 The Proposed Circuit . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5 Conclusion 50
Bibliography 52
[1] F. Dulger, E. Sanchez-Sinencio, “Fully-Integrated LC VCOs at RF on Silicon,”
Southwest Symposium on Mixed-Signal Design, pp. 13–18, 2001.
[2] Behzad Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
[3] Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits, Oxford University
Press, New York Oxford, 4th edition, 1998.
[4] David A. Johns and Ken Martin, Analog Integrated Circuit Design, John
Wiley and Sons, 1997.
[5] A. Hajimiri, S. Limotyrakis, T.H. Lee, “Jitter and phase noise in ring oscillators,”
IEEE Journal of Solid-State Circuits, vol. 34, no. 6, pp. 790–804, June
1999.
[6] Guillermo Gonzalez, Microwave Transistor Amplifiers : Analysis and Design,
Prentice Hall, 2nd edition, 1997.
[7] A. Hajimiri, T.H. Lee, “A general theory of phase noise in electrical oscillators,”
IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb.
1998.
[8] Seog-Jun Lee, Beomsup Kim, Kwyro Lee, “A novel high-speed ring oscillator
for multiphase clock generation using negative skewed delay scheme,” IEEE
Journal of Solid-State Circuits, vol. 32, no. 2, pp. 289–291, Feb. 1997.
[9] Thomas H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits,
The Press Syndicate of The University of Cambridge, 1998.
[10] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE
Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905–910, June 2000.
[11] B. De Muer, N. Itoh, M. Borremans, M. Steyaert, “A 1.8 GHz highly-tunable
low-phase-noise CMOS VCO,” Proceedings of the IEEE Custom Integrated
Circuits Conference, pp. 585–588, 2000.
[12] A.H. Mostafa, M.N. El-Gamal, R.A. Rafla, “A Sub-1-V 4-GHz CMOS VCO
and a 12.5-GHz oscillator for low-voltage and high-frequency applications,”
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,
vol. 48, no. 10, pp. 919–926, Oct. 2001.
[13] A.H. Mostafa, M.N. El-Gamal, R.A. Rafla, “A 9.8 GHz back-gate tuned VCO
in 0.35 µm CMOS,” IEEE International Solid-State Circuits Conference Digest
of Technical Papers, pp. 406–407, 1999.
[14] Chan-Hong Park, Beomsup Kim, “A low-noise, 900-MHz VCO in 0.6-=mum
CMOS,” IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 586–591,
May 1999.
[15] W.S.T. Yan, H.C. Luong, “A 900-MHz CMOS low-phase-noise voltagecontrolled
ring oscillator,” IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, vol. 48, no. 2, pp. 216–221, Feb. 2001.
[16] M. Tiebout, “Low-power low-phase-noise differentially tuned quadrature
VCO design in standard CMOS,” IEEE Journal of Solid-State Circuits, vol.
36, no. 7, pp. 1018–1024, July 2001.
[17] M.A. Do, R. Zhao, K.S. Yeo, J.-G. Ma, “Fully integrated 10 GHz CMOS
VCO,” Electronics Letters, vol. 37, no. 16, pp. 1021–1023, Aug. 2001.
[18] K.-L. Chan, M.-A. Do, K.-S. Yeo, J.-G. Ma, “1.5 V 1.8 GHz bandpass amplifier,”
IEE Proceedings-Circuits, Devices and Systems, vol. 147, no. 6, pp.
331–333, Dec. 2000.
[19] F. Svelto, R. Castello, “A bond-wire inductor-MOS varactor VCO tunable
from 1.8 to 2.4 GHz,” IEEE Transactions on Microwave Theory and Techniques,
vol. 50, no. 1, pp. 403–407, Jan. 2002.
[20] D. Ham, A. Hajimiri, “Concepts and methods in optimization of integrated
LC VCOs,” IEEE Journal of Solid-State Circuits, vol. 36, no. 6, pp. 896–909,
June 2001.
[21] E. Hegazi, H. Sjoland, A.A. Abidi, “A filtering technique to lower LC oscillator
phase noise,” IEEE Journal of Solid-State Circuits, vol. 36, no. 12, pp.
1921–1930, Dec. 2001.
[22] De Ranter, Steyaert, “A 0.25 µm CMOS 17 GHz VCO,” IEEE International
Solid-State Circuits Conference Digest of Technical Papers, pp. 370–371,466,
2001.
[23] Seong-Mo Yim, K.O. Kenneth, “Demonstration of a switched resonator concept
in a dual-band monolithic CMOS LC-tuned VCO,” IEEE Conference on
Custom Integrated Circuits, pp. 205–208, 2001.
[24] C. Samori, S. Levantino, V. Boccuzzi, “A -94 dBc/Hz@100 kHz, fullyintegrated,
5-GHz, CMOS VCO with 18% tuning range for Bluetooth applications,”
IEEE Conference on Custom Integrated Circuits, pp. 201–204,
2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top