跳到主要內容

臺灣博碩士論文加值系統

(18.208.126.232) 您好!臺灣時間:2022/08/12 01:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:包大
研究生(外文):Da-Tian Bau
論文名稱:亞砷酸鈉對DNA修補作用之影響
論文名稱(外文):Effect of sodium arsenite on DNA repair
指導教授:詹崑源詹崑源引用關係
指導教授(外文):Kun-Yan Jan
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:134
中文關鍵詞:紫外光甲基磺酸甲酯修補作用亞砷酸鈉
外文關鍵詞:UVCMMSrepairarsenite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
長期砷暴露被認為與許多人類的病變有關,其中包括癌症。砷會誘發染色體異常、增高許多致突變物質的基因毒性、抑制DNA的修補。由於抑制DNA修補,會增高基因毒性,因此砷抑制DNA修補可能與砷的協力基因毒性有關。而因為維持DNA的完整性,是細胞行使正常機能的重要條件,所以砷對於DNA完整性的影響,在種種與砷有關的人類疾病的病因學上,可能伴演著重要的角色。本研究的目的,即在探討砷抑制DNA修補作用的機制。
藉助DNA合成抑制劑,來累積不正常的DNA鍵結物經細胞切除後所造成的DNA斷裂,以及利用不同的酵素來辨識不同的不正常的DNA鍵結物,學生成功地運用了單細胞鹼性電泳系統,來探討砷對於人類纖維母細胞中,不正常的DNA鍵結物切除步驟與DNA斷裂再接合步驟的抑制機制。實驗結果顯示,砷會抑制細胞對經由紫外線、 4-nitroquinoline 1-oxide、X光所造成的不正常的DNA鍵結物的切除,但對經由甲基磺酸甲酯、雙氧水、sodium nitrosoprusside或3-morpholinosydnonimine所造成的不正常的DNA鍵結物之切除,則無抑制作用。而砷對X光、甲基磺酸甲酯、雙氧水所誘發DNA斷裂的再接合步驟也有明顯的抑制作用,但對紫外線、4-nitroquinoline 1-oxide所誘發DNA斷裂的再接合步驟則無抑制作用。使用調節劑與生成劑的實驗結果顯示,一氧化氮及超氧參與了砷對於不正常的DNA鍵結物切除的抑制,而過氧化氫則參與了砷對於DNA斷裂再接合步驟的抑制。以砷處理在人類纖維母細胞中也會使一氧化氮與過氧化氫的產量上昇。目前為止學生的結果顯示,砷經由一氧化氮與超氧來抑制不正常DNA鍵結物的切除,而砷抑制DNA股斷裂再接合的步驟則可能是透過過氧化氫產量的上昇。
在比較了砷對於紫外光、4-nitroquinoline 1-oxide、甲基磺酸甲酯、及雙氧水等所誘發DNA修補的抑制作用的強度後,發現紫外光所誘發之不正常DNA鍵結物切除的步驟,砷的抑制作用最明顯。在亞砷酸鈉濃度為0.5微莫耳即可觀測到明顯的抑制現象。除了人類纖維母細胞外,中華倉鼠卵巢細胞也是泛用於DNA修補研究的細胞株。是故學生乃以中華倉鼠卵巢細胞,求證砷對於紫外光所造成的不正常DNA鍵結物切除的抑制作用。關於砷致毒機制,近年來較熱門的假說有三,即”砷與雙巰基鍵結” 、”砷產生活性氧化物” 、”砷產生一氧化氮”等。學生乃試圖解答 ”三假說中何者真正參與了砷對於紫外光所誘發的DNA修補的抑制作用?” 經”寄主細胞DNA修補”系統的實驗結果顯示,砷對於紫外光照射所誘發之DNA修補的抑制作用,會受到一氧化氮合成酵素抑制劑的拮抗,砷也會造成中國倉鼠卵巢細胞中一氧化氮的濃度上昇,並且一氧化氮生成劑也與砷一樣,對紫外光照射所誘發之DNA修補有抑制作用。因此,一氧化氮參與了砷對於紫外光所誘發的不正常DNA鍵結物之切除步驟的抑制作用,在中華倉鼠卵巢細胞中也獲得證實。另一方面,使用氧化調節劑的實驗結果中,並沒有明顯的數據證明活性氧化物參與了砷對於紫外光所誘發之DNA修補的抑制作用。而強力巰基結合劑,phenylarsine oxide,非但不能抑制紫外光所誘發的不正常DNA鍵結物之切除,也無法造成中華倉鼠卵巢細胞中一氧化氮濃度的上昇。綜合上述結果得知,一氧化氮參與了砷對於紫外光所誘發的可被T4 UV endonuclease V的嘧啶雙體之切除步驟的抑制作用。
實驗結果中也發現,人類纖維母細胞與中華倉鼠卵巢細胞對於砷抑制作用的反應也有明顯的不同。砷對於紫外光所誘發的嘧啶雙體之切除的抑制作用,在人類纖維母細胞與中華倉鼠卵巢細胞實驗結果一致。但砷對於紫外光所誘發之DNA斷裂再接合的抑制作用,則僅在中華倉鼠卵巢細胞中觀測到,在人類纖維母細胞則否。據此推測人類細胞與囓齒類細胞在進行紫外光所誘發之DNA斷裂再接合步驟中,可能以不同的機制來進行。目前一般認為,囓齒類細胞修復紫外光傷害的能力較人類細胞差。因為囓齒類細胞雖然會修復紫外光所誘發的6-4 pyrimidine-pyrimidone,但對於紫外光所誘發的嘧啶雙體則只修復具轉錄活性基因上的缺失。然而,學生的實驗結果顯示,中華倉鼠卵巢細胞可以完全修復由紫外光所誘發的可被T4 UV endonuclease V切除的不正常的DNA鍵結物,嘧啶雙體。在人類纖維母細胞中,紫外光之DNA產物確如文獻所載,以6-4 pyrimidine-pyrimidone及嘧啶雙體為大宗,但在中華倉鼠卵巢細胞中,紫外光也可造成許多可被formamidopyrimidine-DNA glycosylase或蛋白酵素K辨識切除的不正常DNA鍵結物,這些產物的病理意義仍有待研究。
由於酵素的併用,提高了單細胞電泳方法的靈敏度,因此學生也發現在可抑制DNA修補的砷的濃度範圍內,砷亦可誘發人類纖維母細胞產生不正常的DNA鍵結物。因此,抑制DNA修補與誘發不正常DNA鍵結物在砷造成人類病變的研究上可能是同等的重要。已知在人類血管平滑肌細胞,砷可以經由活化NADH氧化酵素而誘發DNA氧化傷害,然而砷對於臍帶靜脈內皮細胞是否也會誘發DNA傷害則仍屬未知。由於血管內皮細胞與平滑肌細胞是動脈硬化過程中最重要的兩種標的細胞,因此學生也探討砷在人類臍帶靜脈內皮細胞與血管平滑肌細胞中所造成的DNA傷害。砷在此兩種細胞中皆會造成可被formamidopyrimidine-DNA glycosylase切除的不正常DNA鍵結物。意外地,獨在人類臍帶靜脈內皮細胞中,砷會造成可被T4 UV endonuclease V切除的DNA不正常DNA鍵結物。砷在人類臍帶靜脈內皮細胞所造成的可被formamidopyrimidine-DNA glycosylase切除的不正常DNA鍵結物,會受到一氧化氮合成酵素抑制劑的拮抗,卻不受catalase影響;但是,砷在平滑肌細胞所造成可被formamidopyrimidine-DNA glycosylase切除的不正常DNA鍵結物,卻會受到catalase的拮抗,而不受一氧化氮合成酵素抑制劑影響。此結果顯示,砷經由不同的途徑,在此兩種不同的標的細胞中造成不儘相同的不正常的DNA鍵結物。由於砷對於不同細胞的致毒機轉不同,而不同細胞對於砷的敏感性也迥異,在未來的研究中,選取適當的標的組織與細胞是非常重要的事。因為這樣的研究結果對於探討砷造成人類疾病的原因才比較切題。

Chronic arsenite exposure is believed to be related to a wide variety of human disorders, including cancers. Arsenite has been reported to induce chromosome aberrations, to enhance the genotoxicity of several other mutagens, and to inhibit DNA repair. Since inhibition of DNA repair can increase genotoxicity, the co-genotoxicity of arsenite may be related to its inhibition of DNA repair. Since DNA integrity is important for cells to maintain their normal functions, the effects of arsenite on DNA integrity may play a role in the etiology of arsenic-related human disorders. The purpose of this research was to investigate the mechanisms of how arsenite inhibits DNA repair.
By using DNA synthesis inhibitors to accumulate DNA strand breaks, and enzyme-incorporated comet assay to reveal DNA adducts, the inhibitory effect of arsenite on the DNA adduct excision and DNA strand break rejoining in human fibroblasts was studied. The results indicate that arsenite inhibited DNA adduct excision induced by UVC, 4-nitroquinoline 1-oxide and X-ray, but not by methyl methanesulfonate, hydrogen peroxide, sodium nitrosoprusside or 3-morpholinosydnonimine. Conversely, arsenite inhibited the DNA strand break rejoining induced by X-ray, methyl methanesulfonate, and hydrogen peroxide, but not by UVC, or 4-nitroquinoline 1-oxide. The experiments using modulators and donors indicate that nitric oxide and superoxide were involved in arsenite inhibition of DNA adduct excision, whereas, hydrogen peroxide was involved in arsenite inhibition of DNA strand break rejoining. This notion is consistent with the observation that treating human fibroblasts with arsenite also increased the production of nitric oxide and hydrogen peroxide. So far, the results suggest that arsenite inhibited adduct excision in nucleotide excision repair via nitric oxide and superoxide, whereas, arsenite inhibited DNA strand break rejoining in base excision repair via hydrogen peroxide.
The result of comparing the relative inhibitory potency of arsenite on the DNA repair induced by UVC, 4-nitroquinoline 1-oxide, methyl methanesulfonate, and hydrogen peroxide, indicates that the excision of UVC-induced pyrimidine dimers was most sensitive to arsenite inhibition. Apparent inhibition could be detected with 0.5 mM arsenite. In addition to human fibroblasts, Chinese hamster ovary cells are also widely used for DNA repair studies. Therefore, the effect of arsenite on the excision of pyrimidine dimers was reexamined in Chinese hamster cells. Since binding to thiols, induction of reactive oxygen species, and induction of nitric oxide are currently the three major hypotheses for the mechanisms of arsenite toxicity, the question “which of these three pathways is involved in arsenite inhibition of UVC-induced DNA repair? was asked. By using the host cell-mediated DNA repair assay, the results show that arsenite inhibitory effect on UVC-DNA repair can be suppressed by nitric oxide synthase inhibitors. Arsenite also increased nitric oxide production and nitric oxide generators also inhibited UVC-DNA repair. Thus the involvement of nitric oxide in arsenite inhibition of pyrimidine dimer excision was confirmed in Chinese hamster ovary cells. On the other hand, the results of experiments on the effect of oxidant modulators didn’t give a clear indication that reactive oxygen species are involved in arsenite inhibition of UVC-DNA repair. Phenylarsine oxide, a strong thiol-reacting agent, didn’t inhibit pyrimidine dimer excision or UVC-DNA repair and also didn’t increase nitric oxide production. The results show conclusively that nitric oxide is involved in the inhibition of pyrimidine dimer excision by arsenite.
While arsenite inhibited pyrimidine dimer excision in both Chinese hamster ovary cells and human fibroblasts, arsenite inhibited DNA strand break rejoining in UVC-irradiated Chinese hamster ovary cells but not in human fibroblasts. Therefore, different mechanisms may have involved in the UVC-induced DNA strand break rejoining in human and rodent cells. Moreover, it is well recognized that hamster cells repair UVC-induced DNA damage less efficiently than human cells. Rodent cells are proficient in the removal of 6-4 pyrimidine-pyrimidone photoproducts from the overall genome but the cyclobutane pyrimidine dimers are removed only from the transcribing strand of active genes. However, the results indicate that Chinese hamster ovary cells repaired UVC-induced T4 UV endonuclease V-digestible adducts efficiently. It is also known for some time that the genetic damage induced by UVC is primarily cyclobutane pyrimidine dimers (65-90%) and 6-4 pyrimidine-pyrimidone photoproducts (10-35%). It is true in human fibroblast, however, the results indicate that, in addition to T4 UV endonuclease V-digestible adducts, UVC also induced substantial amount of formamidopyrimidine-DNA glycosylase- and proteinase K-digestible adducts in Chinese hamster ovary cells. The biological significance of these adducts is largely unknown.
By using enzyme-incorporated comet assay, arsenite was found to induce DNA adducts at similar concentration range as its inhibition of DNA repair in human fibroblasts. Therefore, induction of DNA damage and inhibition of DNA repair seem to be equally important and they may act in concert to cause human disorders. In human vascular smooth muscle cells, arsenite has been shown to induce oxidative DNA damages via activation of NADH oxidase. However, the effect of arsenite on the induction of DNA damage in human umbilical vein endothelial cells remains unknown. Since endothelial and smooth muscle cells are two most important target cells in atherosclerosis, the induction of DNA damage by arsenite in both human umbilical vein endothelial cells and vascular smooth muscle cells was investigated. Arsenite induced formamidopyrimidine-DNA glycosylase-digestible DNA adducts in both human umbilical vein endothelial cells and vascular smooth muscle cells. Surprisingly, arsenite also induced T4 UV endonuclease V-digestible DNA adducts in human umbilical vein endothelial cells, but this was not observed in vascular smooth muscle cells. Moreover, while arsenite induction of formamidopyrimidine-DNA glycosylase-digestible DNA adducts in umbilical vein endothelial cells was sensitive to the inhibitors of nitric oxide synthase, it was insensitive to catalase. Conversely, arsenite induction of formamidopyrimidine-DNA glycosylase-digestible adducts in vascular smooth muscle cells was sensitive to catalase, but it was insensitive to nitric oxide synthase inhibitors. These data suggest that arsenite may induce different types of DNA adducts in umbilical vein endothelial cells and vascular smooth muscle cells via different pathways. Since arsenic intoxication as well as sensitivity to arsenite is cell-specific, it is important that target tissues and cells are used for further investigations.

謝辭 5
中文摘要 6
ABSTRACT 9
ABBREVIATIONS 11
CHAPTER 1. BACKGROUND AND INTRODUCTION 12
1-1. DNA EXCISION REPAIR IN MAMMALIAN CELLS 12
1-1-1. Base excision repair 12
1-1-1-1. DNA glycosylases 12
1-1-1-2. Short-patch BER pathway 13
1-1-1-3. Long-patch BER pathway 14
1-1-2. Nucleotide excision repair 15
1-1-2-1. Differences between BER and NER 15
1-1-2-2. Prokaryotic NER 15
1-1-2-3. Eukaryotic NER 15
1-1-2-4. Steps and proteins involved in NER 16
1-1-2-5. Transcription-coupled repair and global genome repair 19
1-1-3. Mismatch excision repair 19
1-1-3-1. Prokaryotic MMR 20
1-1-3-2. Eukaryotic MMR 20
1-2. DNA DAMAGING AGENTS, THEIR DNA ADDUCTS AND REPAIR 21
1-2-1. Ultraviolet C 21
1-2-2. 4-Nitroquinoline 1-oxide (4NQO) 22
1-2-3. Methyl methanesulfonate (MMS) 22
1-2-4. Hydrogen peroxide (H2O2) 23
1-2-5. Nitric oxide (NO) and peroxynitrite 24
1-2-6. X-ray 25
1-3. DETECTION OF DNA DAMAGE 26
1-3-1. DNA single strand breaks 26
1-3-2. DNA double strand breaks 27
1-3-3. Base damages 27
1-3-4. DNA-protein and DNA-DNA crosslinks 28
1-3-5. Host cell-mediated DNA repair 29
1-3-6. Comet assay 30
1-4. ARSENIC 31
1-4-1. Distributions of arsenic compounds 31
1-4-2. Human disorders related to arsenic exposure 31
1-4-3. Carcinogenicity of arsenic 32
1-4-4. Genotoxicity of arsenic 33
1-4-5. Co-genotoxicity of arsenic 34
1-4-6. Inhibition of DNA repair by arsenic 35
1-4-7. The involvement of reactive oxygen and nitrogen species in arsenic toxicity 37
1-5. GENERAL INTRODUCTION 39
CHAPTER 2: MATERIALS AND METHODS 40
2-1. MATERIALS 40
2-2. CELL CULTURE 40
2-3. PLASMIDS AND TRANSFECTION 41
2-4. UVC IRRADIATION 41
2-5. X-RAY IRRADIATION 41
2-6. ASSAY OF LUCIFERASE AND b-GALACTOSIDASE ACTIVITY 41
2-7. COLONY FORMATION ASSAY 42
2-8. SINGLE-CELL ALKALINE ELECTROPHORESIS (ALKALINE COMET ASSAY) 42
2-9. DETERMINATION OF NITRITE 43
2-10. DETERMINATION OF HYDROGEN PEROXIDE 44
2-11. HYDROXYUREA PLUS CYTOSINE-b-D-ARABINOFURANOSIDE TREATMENT 44
2-12. STATISTICS 45
CHAPTER 3. ARSENITE INHIBITS EXCISON IN NUCLEOTIDE EXCISION REPAIR AND REJOINING IN BASE EXCISION REPAIR 47
3-1. SUMMARY 47
3-2. RATIONALE AND PURPOSE 47
3-3. RESULTS 49
3-3-1. NO was involved in arsenite inhibition of NER excision 50
3-3-2. H2O2 was involved in arsenite inhibition of BER rejoining 52
3-3-3. Arsenite inhibited DNA repair and induced DNA damage at similar concentration 53
3-4. DISCUSSION 53
CHAPTER 4. NITRIC OXIDE IS INVOLVED IN ARSENITE INHIBITION OF PYRIMIDINE DIMER EXCISION 73
4-1. SUMMARY 73
4-2. RATIONALE AND PURPOSE 73
4-3. RESULTS 75
4-3-1. Arsenite inhibited both CPD excision and UVC-plasmid repair 75
4-3-2. NO, not ROS, was involved in arsenite inhibition of CPD excision and UVC-plasmid repair 76
4-3-3. Binding to thiols was not involved in arsenite inhibition of CPD excision or UVC-plasmid repair 78
4-3-4. Calcium homeostasis was critical in UVC-plasmid repair 79
4-3-5. UVL10 was more sensitive to UVC, excision-deficient, and inert to arsenite inhibition of UVC-plasmid repair 79
4-3-6. Arsenite inhibited CPD excision in both CHO-K1 cells and human fibroblasts 80
4-4. DISCUSSION 80
CHAPTER 5. NITRIC OXIDE IS INVOLVED IN ARSENITE INDUCTION OF OXIDATIVE DNA ADDUCTS IN HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS BUT NOT IN VASCULAR SMOOTH MUSCLE CELLS 98
5-1. SUMMARY 98
5-2. RATIONALE AND PURPOSE 98
5-3. RESULTS 99
5-3-1. Arsenite induced Fpg-digestible adducts in VSMC; induced DenV- and Fpg-digestible adducts in HUVEC 99
5-3-2. Arsenite induced DNA adducts via H2O2 in VSMC; via NO in HUVEC 100
5-3-3. Arsenite induced Fpg-digestible adducts were calcium-dependent in HUVEC 101
5-4. DISCUSSION 101
CHAPTER 6. CONCLUSION AND PROSPECTS 106
6-1. ARSENITE INHIBITED DNA REPAIR VIA NO, SUPEROXIDE AND H2O2 106
6-2. ARSENITE INHIBITED DNA REPAIR AT MICROMOLAR LEVEL 106
6-3. ARSENITE INHIBITION OF UVC-INDUCED DSB REJOINING WAS CELL-SPECIFIC 106
6-4. UVC INDUCED FPG- AND PROTEINASE K-DIGESTIBLE ADDUCTS IN CHO-K1 CELLS 106
6-5. ARSENITE IS A GENOTOXICANT 106
6-6. WHICH TYPE OF ARSENIC IS MOST POTENT IN INHIBITING CPD EXCISION? 106
6-7. WHICH REPAIR PROTEINS ARE THE TARGETS FOR ARSENITE INHIBITION OF DNA ADDUCT EXCISION? 106
6-8. FURTHER CONFIRMATION THAT ARSENITE INHIBITED ADDUCT EXCISION, BUT NOT DSB IN NER 106
6-9. FURTHER CONFIRMATION ON THE INVOLVEMENT OF NO AND PEROXYNITRITE IN ARSENITE INHIBITION OF ADDUCT EXCISION 106
6-10. FURTHER CONFIRMATION THAT ARSENITE INHIBITION OF DSB REJOINING WAS CELL-SPECIFIC 106
6-11. AT WHICH LEVEL DOES ARSENITE INHIBIT CPD EXCISION, TRANSCRIPTION, TRANSLATION OR PROTEIN MODIFICATION? 106
6-12. THE INTERACTION OF HUVEC AND VSMC CELLS 106
CHAPTER 7. REFERENCES 106

1. Aaronson SA, Lytle CD, (1970) Decreased host cell reactivation of irradiated SV40 virus in xeroderma pigmentosum. Nature 228: 359-361.
2. Aboussekhra A, Biggerstaff M, Shivji MK, Vilpo JA, Moncollin V, Podust VN, Protic M, Hubscher U, (1995) Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80: 859-868.
3. Acharya S, Wilson T, Gradia S, Kane MF, Guerrette S, Marsischky GT, Kolodner R, Fishel R, (1996) hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proc Natl Acad Sci U S A 93: 13629-13634.
4. Ahnstrom G, Erixon K, (1973) Radiation induced strand breakage in DNA from mammalian cells. Strand separation in alkaline solution. Int J Radiat Biol Relat Stud Phys Chem Med 23: 285-289.
5. Ames BN, (1989) Mutagenesis and carcinogenesis: endogenous and exogenous factors. Environ Mol Mutagen 14: S66-77.
6. Applegate LA, Luscher P, Tyrrell RM, (1991) Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res 51: 974-978.
7. Aruoma OI, Halliwell B, Dizdaroglu M, (1989) Iron ion-dependent modification of bases in DNA by the superoxide radical-generating system hypoxanthine/xanthine oxidase. J Biol Chem 264: 13024-13028.
8. Asmuss M, Mullenders LH, Eker A, Hartwig A, (2000a) Differential effects of toxic metal compounds on the activities of Fpg and XPA, two zinc finger proteins involved in DNA repair. Carcinogenesis 21: 2097-2104.
9. Asmuss M, Mullenders LH, Hartwig A, (2000b) Interference by toxic metal compounds with isolated zinc finger DNA repair proteins. Toxicol Lett 112-113: 227-231.
10. Barchowsky A, Klei LR, Dudek EJ, Swartz HM, James PE, (1999) Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. Free Radic Biol Med 27: 1405-1412.
11. Barnes DE, Tomkinson AE, Lehmann AR, Webster AD, Lindahl T, (1992) Mutations in the DNA ligase I gene of an individual with immunodeficiencies and cellular hypersensitivity to DNA-damaging agents. Cell 69: 495-503.
12. Basu AK, Loechler EL, Leadon SA, Essigmann JM, (1989) Genetic effects of thymine glycol: site-specific mutagenesis and molecular modeling studies. Proc Natl Acad Sci U S A 86: 7677-7681.
13. Bates MN, Smith AH, Cantor KP, (1995) Case-control study of bladder cancer and arsenic in drinking water. Am J Epidemiol 141: 523-530.
14. Bau DT, Gurr JR, Jan KY, (2001) Nitric oxide is involved in arsenite inhibition of pyrimidine dimer excision. Carcinogenesis 22: 709-716.
15. Beckmann JS, Ye YZ, Anderson PG, Chen J, Accavitti MA, Tarpey MM, White CR, (1994) Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe Seyler 375: 81-88.
16. Benditt EP, Benditt JM, (1973) Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci U S A 70: 1753-1756.
17. Bennett CB, Rainbow AJ, (1989) DNA damage and biological expression of adenovirus: a comparison of liquid versus frozen conditions of exposure to gamma rays. Radiat Res 120: 102-112.
18. Bennett RA, Wilson DM, Wong D, Demple B, (1997) Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway. Proc Natl Acad Sci U S A 94: 7166-7169.
19. Berk BC, Abe JI, Min W, Surapisitchat J, Yan C, (2001) Endothelial atheroprotective and anti-inflammatory mechanisms. Ann N Y Acad Sci 947: 93-109; discussion 109-111.
20. Berwick M, Vineis P, (2000) Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review. J Natl Cancer Inst 92: 874-897.
21. Bianchini F, Wild CP, (1994) 7-Methyldeoxyguanosine as a marker of exposure to environmental methylating agents. Toxicol Lett 72: 175-184.
22. Biedermann KA, Landolph JR, (1987) Induction of anchorage independence in human diploid foreskin fibroblasts by carcinogenic metal salts. Cancer Res 47: 3815-3823.
23. Bocker T, Barusevicius A, Snowden T, Rasio D, Guerrette S, Robbins D, Schmidt C, Burczak J, (1999) hMSH5: a human MutS homologue that forms a novel heterodimer with hMSH4 and is expressed during spermatogenesis. Cancer Res 59: 816-822.
24. Bockstahler LE, Lytle CD, (1977) Radiation enhanced reactivation of nuclear replicating mammalian viruses. Photochem Photobiol 25: 477-482.
25. Bohr VA, (1991) Gene specific damage and repair after treatment of cells with UV and chemotherapeutical agents. Adv Exp Med Biol 283: 225-233.
26. Bohr VA, Evans MK, Fornace AJ, (1989) DNA repair and its pathogenetic implications. Lab Invest 61: 143-161.
27. Bohr VA, Smith CA, Okumoto DS, Hanawalt PC, (1985) DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40: 359-369.
28. Brash DE, (1988) UV mutagenic photoproducts in Escherichia coli and human cells: a molecular genetics perspective on human skin cancer. Photochem Photobiol 48: 59-66.
29. Bredt DS, Snyder SH, (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A 87: 682-685.
30. Breimer LH, (1990) Molecular mechanisms of oxygen radical carcinogenesis and mutagenesis: the role of DNA base damage. Mol Carcinog 3: 188-197.
31. Bronner CE, Baker SM, Morrison PT, Warren G, Smith LG, Lescoe MK, Kane M, Earabino C, (1994) Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368: 258-261.
32. Brown JL, Kitchin KT, (1996) Arsenite, but not cadmium, induces ornithine decarboxylase and heme oxygenase activity in rat liver: relevance to arsenic carcinogenesis. Cancer Lett 98: 227-231.
33. Brown KG, Guo HR, Kuo TL, Greene HL, (1997) Skin cancer and inorganic arsenic: uncertainty-status of risk. Risk Anal 17: 37-42.
34. Burney S, Caulfield JL, Niles JC, Wishnok JS, Tannenbaum SR, (1999) The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat Res 424: 37-49.
35. Burns LA, Sikorski EE, Saady JJ, Munson AE, (1991) Evidence for arsenic as the immunosuppressive component of gallium arsenide. Toxicol Appl Pharmacol 110: 157-169.
36. Cadet J, Odin F, Mouret JF, Polverelli M, Audic A, Giacomoni P, Favier A, Richard MJ, (1992) Chemical and biochemical postlabeling methods for singling out specific oxidative DNA lesions. Mutat Res 275: 343-354.
37. Cantoni O, Hussain S, Guidarelli A, Cattabeni F, (1994) Cross-resistance to heavy metals in hydrogen peroxide-resistant CHO cell variants. Mutat Res 324: 1-6.
38. Cappelli E, Taylor R, Cevasco M, Abbondandolo A, Caldecott K, Frosina G, (1997) Involvement of XRCC1 and DNA ligase III gene products in DNA base excision repair. J Biol Chem 272: 23970-23975.
39. Casalone R, Granata P, Minelli E, Portentoso P, Giudici A, Righi R, Castelli P, Socrate A, (1991) Cytogenetic analysis reveals clonal proliferation of smooth muscle cells in atherosclerotic plaques. Hum Genet 87: 139-143.
40. Cebrian ME, Albores A, Aguilar M, Blakely E, (1983) Chronic arsenic poisoning in the north of Mexico. Hum Toxicol 2: 121-133.
41. Chaineau E, Binet S, Pol D, Chatellier G, Meininger V, (1990) Embryotoxic effects of sodium arsenite and sodium arsenate on mouse embryos in culture. Teratology 41: 105-112.
42. Chen CJ, Chen CW, Wu MM, Kuo TL, (1992) Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br J Cancer 66: 888-892.
43. Chen CJ, Hsueh YM, Lai MS, Shyu MP, Chen SY, Wu MM, Kuo TL, Tai TY, (1995) Increased prevalence of hypertension and long-term arsenic exposure. Hypertension 25: 53-60.
44. Chen CJ, Kuo TL, Wu MM, (1988a) Arsenic and cancers. Lancet 1: 414-415.
45. Chen CJ, Wang CJ, (1990) Ecological correlation between arsenic level in well water and age-adjusted mortality from malignant neoplasms. Cancer Res 50: 5470-5474.
46. Chen CJ, Wu MM, Lee SS, Wang JD, Cheng SH, Wu HY, (1988b) Atherogenicity and carcinogenicity of high-arsenic artesian well water. Multiple risk factors and related malignant neoplasms of blackfoot disease. Arteriosclerosis 8: 452-460.
47. Chen HJ, Chen YM, Wang TF, Wang KS, Shiea J, (2001) 8-Nitroxanthine, an adduct derived from 2'-deoxyguanosine or DNA reaction with nitryl chloride. Chem Res Toxicol 14: 536-546.
48. Chiou HY, Hsueh YM, Liaw KF, Horng SF, Chiang MH, Pu YS, Lin JS, Huang CH, (1995) Incidence of internal cancers and ingested inorganic arsenic: a seven-year follow-up study in Taiwan. Cancer Res 55: 1296-1300.
49. Christodoulides N, Durante W, Kroll MH, Schafer AI, (1995) Vascular smooth muscle cell heme oxygenases generate guanylyl cyclase-stimulatory carbon monoxide. Circulation 91: 2306-2309.
50. Cleaver JE, Jen J, Charles WC, Mitchell DL, (1991) Cyclobutane dimers and (6-4) photoproducts in human cells are mended with the same patch sizes. Photochem Photobiol 54: 393-402.
51. Collins AR, Duthie SJ, Dobson VL, (1993) Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis 14: 1733-1735.
52. Cook R, Cook A, (1975) The attractiveness to males of female Drosophila melanogaster: effects of mating, age and diet. Anim Behav 23: 521-526.
53. Coverley D, Kenny MK, Lane DP, Wood RD, (1992) A role for the human single-stranded DNA binding protein HSSB/RPA in an early stage of nucleotide excision repair. Nucleic Acids Res 20: 3873-3880.
54. Cullmann G, Fien K, Kobayashi R, Stillman B, (1995) Characterization of the five replication factor C genes of Saccharomyces cerevisiae. Mol Cell Biol 15: 4661-4671.
55. Cuyckens F, Rozenberg R, de Hoffmann E, Claeys M, (2001) Structure characterization of flavonoid O-diglycosides by positive and negative nano-electrospray ionization ion trap mass spectrometry. J Mass Spectrom 36: 1203-1210.
56. Darley-Usmar VM, Hogg N, O'Leary VJ, Wilson MT, Moncada S, (1992) The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low density lipoprotein. Free Radic Res Commun 17: 9-20.
57. Dawson TM, Hung K, Dawson VL, Steiner JP, Snyder SH, (1995) Neuroprotective effects of gangliosides may involve inhibition of nitric oxide synthase. Ann Neurol 37: 115-118.
58. de Laat WL, Appeldoorn E, Jaspers NG, Hoeijmakers JH, (1998) DNA structural elements required for ERCC1-XPF endonuclease activity. J Biol Chem 273: 7835-7842.
59. de Vera ME, Kim YM, Wong HR, Wang Q, Billiar TR, Geller DA, (1996a) Heat shock response inhibits cytokine-inducible nitric oxide synthase expression in rat hepatocytes. Hepatology 24: 1238-1245.
60. de Vera ME, Wong JM, Zhou JY, Tzeng E, Wong HR, Billiar TR, Geller DA, (1996b) Cytokine-induced nitric oxide synthase gene transcription is blocked by the heat shock response in human liver cells. Surgery 120: 144-149.
61. Delnomdedieu M, Basti MM, Otvos JD, Thomas DJ, (1993) Transfer of arsenite from glutathione to dithiols: a model of interaction. Chem Res Toxicol 6: 598-602.
62. DeMott MS, Zigman S, Bambara RA, (1998) Replication protein A stimulates long patch DNA base excision repair. J Biol Chem 273: 27492-27498.
63. Demple B, Amabile-Cuevas CF, (1991) Redox redux: the control of oxidative stress responses. Cell 67: 837-839.
64. Demple B, Harrison L, (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63: 915-948.
65. Demple B, Linn S, (1982) 5,6-Saturated thymine lesions in DNA: production by ultraviolet light or hydrogen peroxide. Nucleic Acids Res 10: 3781-3789.
66. Deterding LJ, Prasad R, Mullen GP, Wilson SH, Tomer KB, (2000) Mapping of the 5'-2-deoxyribose-5-phosphate lyase active site in DNA polymerase beta by mass spectrometry. J Biol Chem 275: 10463-10471.
67. Dianov GL, Prasad R, Wilson SH, Bohr VA, (1999) Role of DNA polymerase beta in the excision step of long patch mammalian base excision repair. J Biol Chem 274: 13741-13743.
68. Dich J, Zahm SH, Hanberg A, Adami HO, (1997) Pesticides and cancer. Cancer Causes Control 8: 420-443.
69. Dizdaroglu M, (1992) Oxidative damage to DNA in mammalian chromatin. Mutat Res 275: 331-342.
70. Dizdaroglu M, Rao G, Halliwell B, Gajewski E, (1991) Damage to the DNA bases in mammalian chromatin by hydrogen peroxide in the presence of ferric and cupric ions. Arch Biochem Biophys 285: 317-324.
71. Dogliotti E, Fortini P, Pascucci B, Parlanti E, (2001) The mechanism of switching among multiple BER pathways. Prog Nucleic Acid Res Mol Biol 68: 3-27.
72. Dolling JA, Boreham DR, Brown DL, Raaphorst GP, Mitchel RE, (1997) Rearrangement of human cell homologous chromosome domains in response to ionizing radiation. Int J Radiat Biol 72: 303-311.
73. Domena JD, Timmer RT, Dicharry SA, Mosbaugh DW, (1988) Purification and properties of mitochondrial uracil-DNA glycosylase from rat liver. Biochemistry 27: 6742-6751.
74. Dong JT, Luo XM, (1994) Effects of arsenic on DNA damage and repair in human fetal lung fibroblasts. Mutat Res 315: 11-15.
75. Douki T, Cadet J, (1996) Peroxynitrite mediated oxidation of purine bases of nucleosides and isolated DNA. Free Radic Res 24: 369-380.
76. Douki T, Cadet J, Ames BN, (1996) An adduct between peroxynitrite and 2'-deoxyguanosine: 4,5-dihydro-5-hydroxy-4-(nitrosooxy)-2'-deoxyguanosine. Chem Res Toxicol 9: 3-7.
77. Dresler SL, Frattini MG, (1986) DNA replication and UV-induced DNA repair synthesis in human fibroblasts are much less sensitive than DNA polymerase alpha to inhibition by butylphenyl-deoxyguanosine triphosphate. Nucleic Acids Res 14: 7093-7102.
78. Eker AP, Vermeulen W, Miura N, Tanaka K, Jaspers NG, Hoeijmakers JH, Bootsma D, (1992) Xeroderma pigmentosum group A correcting protein from calf thymus. Mutat Res 274: 211-224.
79. Elbirt KK, Whitmarsh AJ, Davis RJ, Bonkovsky HL, (1998) Mechanism of sodium arsenite-mediated induction of heme oxygenase-1 in hepatoma cells. Role of mitogen-activated protein kinases. J Biol Chem 273: 8922-8931.
80. Esser P, Heimann K, Bartz-schmidt KU, Fontana A, Schraermeyer U, Thumann G, Weller M, (1997) Apoptosis in proliferative vitreoretinal disorders: possible involvement of TGF-beta-induced RPE cell apoptosis. Exp Eye Res 65: 365-378.
81. Evans E, Fellows J, Coffer A, Wood RD, (1997) Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. Embo J 16: 625-638.
82. Ewig RA, Kohn KW, (1978) DNA-protein cross-linking and DNA interstrand cross-linking by haloethylnitrosoureas in L1210 cells. Cancer Res 38: 3197-3203.
83. Fadlallah S, Lachapelle M, Krzystyniak K, Cooper S, Denizeau F, Guertin F, Fournier M, (1994) O6-methylguanine-DNA adducts in rat lymphocytes after in vivo exposure to N-nitrosodimethylamine (NDMA). Int J Immunopharmacol 16: 583-591.
84. Falk H, Caldwell GG, Ishak KG, Thomas LB, Popper H, (1981) Arsenic-related hepatic angiosarcoma. Am J Ind Med 2: 43-50.
85. Fertil B, Modak S, Chavaudra N, Debry H, Meyer F, Malaise EP, (1984) Detection in situ of gamma-ray-induced DNA strand breaks in single cells: enzymatic labelling of free 3'-OH ends. Int J Radiat Biol Relat Stud Phys Chem Med 46: 529-540.
86. Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R, (1994) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 77: 167.
87. Ford JM, Baron EL, Hanawalt PC, (1998) Human fibroblasts expressing the human papillomavirus E6 gene are deficient in global genomic nucleotide excision repair and sensitive to ultraviolet irradiation. Cancer Res 58: 599-603.
88. Fordyce FM, Williams TM, Paijitpapapon A, Charoenchaisei P, (1995) Hydrogeochemistry of Arsenic in an Area of Chronic Mining-related Arsenium. Ron Phibun District. British Geological Survey, Keyworth.
89. Fortini P, Parlanti E, Sidorkina OM, Laval J, Dogliotti E, (1999) The type of DNA glycosylase determines the base excision repair pathway in mammalian cells. J Biol Chem 274: 15230-15236.
90. Fortini P, Pascucci B, Belisario F, Dogliotti E, (2000) DNA polymerase beta is required for efficient DNA strand break repair induced by methyl methanesulfonate but not by hydrogen peroxide. Nucleic Acids Res 28: 3040-3046.
91. Fortini P, Pascucci B, Parlanti E, Sobol RW, Wilson SH, Dogliotti E, (1998) Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells. Biochemistry 37: 3575-3580.
92. Frankenberg-Schwager M, (1990a) Induction, repair and biological relevance of radiation-induced DNA lesions in eukaryotic cells. Radiat Environ Biophys 29: 273-292.
93. Frankenberg-Schwager M, Frankenberg D, Harbich R, Adamczyk C, (1990b) A comparative study of rejoining of DNA double-strand breaks in yeast irradiated with 3.5 MeV alpha-particles or with 30 MeV electrons. Int J Radiat Biol 57: 1151-1168.
94. Franklin WA, Doetsch PW, Haseltine WA, (1985) Structural determination of the ultraviolet light-induced thymine-cytosine pyrimidine-pyrimidone (6-4) photoproduct. Nucleic Acids Res 13: 5317-5325.
95. Franklin WA, Haseltine WA, (1984) Removal of UV light-induced pyrimidine-pyrimidone(6-4) products from Escherichia coli DNA requires the uvrA, uvrB, and urvC gene products. Proc Natl Acad Sci U S A 81: 3821-3824.
96. Friedberg EC, (1995) Out of the shadows and into the light: the emergence of DNA repair. Trends Biochem Sci 20: 381.
97. Friedberg EC, Bardwell AJ, Bardwell L, Feaver WJ, Kornberg RD, Svejstrup JQ, Tomkinson AE, Wang Z, (1995) Nucleotide excision repair in the yeast Saccharomyces cerevisiae: its relationship to specialized mitotic recombination and RNA polymerase II basal transcription. Philos Trans R Soc Lond B Biol Sci 347: 63-68.
98. Fronza G, Madzak C, Campomenosi P, Inga A, Iannone R, Abbondandolo A, Sarasin A, (1994) Mutation spectrum of 4-nitroquinoline 1-oxide-damaged single-stranded shuttle vector DNA transfected into monkey cells. Mutat Res 308: 117-125.
99. Fukuyama N, Takebayashi Y, Hida M, Ishida H, Ichimori K, Nakazawa H, (1997) Clinical evidence of peroxynitrite formation in chronic renal failure patients with septic shock. Free Radic Biol Med 22: 771-774.
100. Ganesan AK, Hunt J, Hanawalt PC, (1999) Expression and nucleotide excision repair of a UV-irradiated reporter gene in unirradiated human cells. Mutat Res 433: 117-126.
101. Gary R, Kim K, Cornelius HL, Park MS, Matsumoto Y, (1999) Proliferating cell nuclear antigen facilitates excision in long-patch base excision repair. J Biol Chem 274: 4354-4363.
102. Germolec DR, Spalding J, Yu HS, Chen GS, Simeonova PP, Humble MC, Bruccoleri A, Boorman GA, (1998) Arsenic enhancement of skin neoplasia by chronic stimulation of growth factors. Am J Pathol 153: 1775-1785.
103. Glickman BW, Schaaper RM, Haseltine WA, Dunn RL, Brash DE, (1986) The C-C (6-4) UV photoproduct is mutagenic in Escherichia coli. Proc Natl Acad Sci U S A 83: 6945-6949.
104. Gonsebatt ME, Vega L, Herrera LA, Montero R, Rojas E, Cebrian ME, Ostrosky-Wegman P, (1992) Inorganic arsenic effects on human lymphocyte stimulation and proliferation. Mutat Res 283: 91-95.
105. Goodhead DT, Nikjoo H, (1989) Track structure analysis of ultrasoft X-rays compared to high- and low-LET radiations. Int J Radiat Biol 55: 513-529.
106. Gopalakrishna P, Khar A, (1995) Comet assay to measure DNA damage in apoptotic cells. J Biochem Biophys Methods 30: 69-73.
107. Gorman CM, Moffat LF, Howard BH, (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2: 1044-1051.
108. Gradia S, Acharya S, Fishel R, (1997) The human mismatch recognition complex hMSH2-hMSH6 functions as a novel molecular switch. Cell 91: 995-1005.
109. Grafstrom RH, (1986) The repair of pyrimidine dimers via a DNA-glycosylase mechanism. Basic Life Sci 38: 281-286.
110. Graziewicz M, Wink DA, Laval F, (1996) Nitric oxide inhibits DNA ligase activity: potential mechanisms for NO-mediated DNA damage. Carcinogenesis 17: 2501-2505.
111. Greinert R, Volkmer B, Virsik-Peuckert RP, Harder D, (1996) Comparative study of the repair kinetics of chromosomal aberrations and DNA strand breaks in proliferating and quiescent CHO cells. Int J Radiat Biol 70: 33-43.
112. Gu Y, Desai T, Gutierrez PL, Lu AL, (2001) Alteration of DNA base excision repair enzymes hMYH and hOGG1 in hydrogen peroxide resistant transformed human breast cells. Med Sci Monit 7: 861-868.
113. Gurr JR, Bau DT, Liu F, Lynn S, Jan KY, (1999) Dithiothreitol enhances arsenic trioxide-induced apoptosis in NB4 cells. Mol Pharmacol 56: 102-109.
114. Gurr JR, Liu F, Lynn S, Jan KY, (1998) Calcium-dependent nitric oxide production is involved in arsenite-induced micronuclei. Mutat Res 416: 137-148.
115. Guzzo A, Karatzios C, Diorio C, DuBow MS, (1994) Metallothionein-II and ferritin H mRNA levels are increased in arsenite-exposed HeLa cells. Biochem Biophys Res Commun 205: 590-595.
116. Halliwell B, Aruoma OI, (1991) DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett 281: 9-19.
117. Hanahan D, Weinberg RA, (2000) The hallmarks of cancer. Cell 100: 57-70.
118. Hanawalt PC, (1987) Preferential DNA repair in expressed genes. Environ Health Perspect 76: 9-14.
119. Hansen LA, Monteiro-Riviere NA, Smart RC, (1990) Differential down-regulation of epidermal protein kinase C by 12-O-tetradecanoylphorbol-13-acetate and diacylglycerol: association with epidermal hyperplasia and tumor promotion. Cancer Res 50: 5740-5745.
120. Hansson J, Wood RD, (1989) Repair synthesis by human cell extracts in DNA damaged by cis- and trans-diamminedichloroplatinum(II). Nucleic Acids Res 17: 8073-8091.
121. Harada YN, Shiomi N, Koike M, Ikawa M, Okabe M, Hirota S, Kitamura Y, Kitagawa M, (1999) Postnatal growth failure, short life span, and early onset of cellular senescence and subsequent immortalization in mice lacking the xeroderma pigmentosum group G gene. Mol Cell Biol 19: 2366-2372.
122. Hartmann A, Speit G, (1994) Comparative investigations of the genotoxic effects of metals in the single cells gel (SCG) assay and the sister chromatid exchange (SCE) test. Environ Mol Mutagen 23: 299-305.
123. Hartwig A, Groblinghoff UD, Beyersmann D, Natarajan AT, Filon R, Mullenders LH, (1997) Interaction of arsenic(III) with nucleotide excision repair in UV-irradiated human fibroblasts. Carcinogenesis 18: 399-405.
124. Hatzistamou J, Kiaris H, Ergazaki M, Spandidos DA, (1996) Loss of heterozygosity and microsatellite instability in human atherosclerotic plaques. Biochem Biophys Res Commun 225: 186-190.
125. He Z, Henricksen LA, Wold MS, Ingles CJ, (1995) RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 374: 566-569.
126. Heaven R, Duncan M, Vukelja SJ, (1994) Arsenic intoxication presenting with macrocytosis and peripheral neuropathy, without anemia. Acta Haematol 92: 142-143.
127. Hei TK, Liu SX, Waldren C, (1998) Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species. Proc Natl Acad Sci U S A 95: 8103-8107.
128. Hoeijmakers JH, (1993) Nucleotide excision repair. II: From yeast to mammals. Trends Genet 9: 211-217.
129. Holmes J, Jr., Clark S, Modrich P, (1990) Strand-specific mismatch correction in nuclear extracts of human and Drosophila melanogaster cell lines. Proc Natl Acad Sci U S A 87: 5837-5841.
130. Hopenhayn-Rich C, Smith AH, Goeden HM, (1993) Human studies do not support the methylation threshold hypothesis for the toxicity of inorganic arsenic. Environ Res, 60: 161-177.
131. Hsueh YM, Chiou HY, Huang YL, Wu WL, Huang CC, Yang MH, Lue LC, Chen GS, (1997) Serum beta-carotene level, arsenic methylation capability, and incidence of skin cancer. Cancer Epidemiol Biomarkers Prev 6: 589-596.
132. Hu Y, Su L, Snow ET, (1998) Arsenic toxicity is enzyme specific and its affects on ligation are not caused by the direct inhibition of DNA repair enzymes. Mutat Res 408: 203-218.
133. Huang H, Huang CF, Huang JS, Wang TC, Jan KY, (1992a) The transition from late G1 to early S phase is most vulnerable to the coclastogenic effect of ultraviolet radiation plus arsenite. Int J Radiat Biol 61: 57-62.
134. Huang JC, Svoboda DL, Reardon JT, Sancar A, (1992b) Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5' and the 6th phosphodiester bond 3' to the photodimer. Proc Natl Acad Sci U S A 89: 3664-3668.
135. Huang RY, Jan KY, Lee TC, (1987) Posttreatment with sodium arsenite is coclastogenic in log phase but not in stationary phase. Hum Genet 75: 159-162.
136. Huang RY, Lee TC, Jan KY, (1986) Cycloheximide suppresses the enhancing effect of sodium arsenite on the clastogenicity of ethyl methanesulphonate. Mutagenesis 1: 467-470.
137. Huang SC, Lee TC, (1998) Arsenite inhibits mitotic division and perturbs spindle dynamics in HeLa S3 cells. Carcinogenesis 19: 889-896.
138. Hubscher U, Thommes P, (1992) DNA polymerase epsilon: in search of a function. Trends Biochem Sci 17: 55-58.
139. Hunting DJ, Gowans BJ, Dresler SL, (1991) DNA polymerase delta mediates excision repair in growing cells damaged with ultraviolet radiation. Biochem Cell Biol 69: 303-308.
140. Hwang BJ, Toering S, Francke U, Chu G, (1998) p48 Activates a UV-damaged-DNA binding factor and is defective in xeroderma pigmentosum group E cells that lack binding activity. Mol Cell Biol 18: 4391-4399.
141. Imlay JA, Chin SM, Linn S, (1988a) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240: 640-642.
142. Imlay JA, Linn S, (1988b) DNA damage and oxygen radical toxicity. Science 240: 1302-1309.
143. Irgolic KT, Greschonig H, Howard AG, (1995) Arsenic, in Analyst: the Encyclopedia of Analytical Science. Academia Press.
144. Iyer N, Reagan MS, Wu KJ, Canagarajah B, Friedberg EC, (1996) Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein. Biochemistry 35: 2157-2167.
145. Jaiswal M, LaRusso NF, Burgart LJ, Gores GJ, (2000) Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res 60: 184-190.
146. Jaiswal M, LaRusso NF, Nishioka N, Nakabeppu Y, Gores GJ, (2001) Human Ogg1, a protein involved in the repair of 8-oxoguanine, is inhibited by nitric oxide. Cancer Res 61: 6388-6393.
147. Jan KY, Huang RY, Lee TC, (1986) Different modes of action of sodium arsenite, 3-aminobenzamide, and caffeine on the enhancement of ethyl methanesulfonate clastogenicity. Cytogenet Cell Genet 41: 202-208.
148. Jan KY, Lin YC, Ho IC, Kao SL, Lee TC, (1990) Effects of sodium arsenite on the cytotoxicity of bleomycin. Toxicol Lett 51: 81-90.
149. Jan KY, Yang JL, Tzeng YJ, Huang RY, Lee TC, (1991) Sodium arsenite synergistically increases the chromosome aberrations induced by alkylating agents in mammalian cells. In Dillon, HK. and Ho, MH. (eds) Biological Monitoring of Exposure to Chemicals: Metals. John Wiley & Sons, NY, pp. 111-118.
150. Jeeves WP, Rainbow AJ, (1979) Gamma-ray enhanced reactivation of gamma-irradiated adenovirus in human cells. Biochem Biophys Res Commun 90: 567-574.
151. Jeggo PA, (1998) Identification of genes involved in repair of DNA double-strand breaks in mammalian cells. Radiat Res 150: S80-91.
152. Jenner TJ, deLara CM, O'Neill P, Stevens DL, (1993) Induction and rejoining of DNA double-strand breaks in V79-4 mammalian cells following gamma- and alpha-irradiation. Int J Radiat Biol 64: 265-273.
153. Jha AN, Noditi M, Nilsson R, Natarajan AT, (1992) Genotoxic effects of sodium arsenite on human cells. Mutat Res 284: 215-221.
154. Jones CJ, Wood RD, (1993) Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry 32: 12096-12104.
155. Kabata-Pendias A, Pendias H, (1984) Trace Elements in Soil and Plants. CRC Press, Boca Raton, Florida, pp. 315.
156. Kanaar R, Hoeijmakers JH, (1997) Recombination and joining: different means to the same ends. Genes Funct 1: 165-174.
157. Kaur H, Halliwell B, (1994) Evidence for nitric oxide-mediated oxidative damage in chronic inflammation. Nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett 350: 9-12.
158. Keeney S, Linn S, (1990) A critical review of permeabilized cell systems for studying mammalian DNA repair. Mutat Res 236: 239-252.
159. Kelman Z, (1997) PCNA: structure, functions and interactions. Oncogene 14: 629-540.
160. Kelman Z, Hurwitz J, (1998) Protein-PCNA interactions: a DNA-scanning mechanism? Trends Biochem Sci 23: 236-238.
161. Kennedy LJ, Moore K, Jr., Caulfield JL, Tannenbaum SR, Dedon PC, (1997) Quantitation of 8-oxoguanine and strand breaks produced by four oxidizing agents. Chem Res Toxicol 10: 386-92.
162. Kent CR, Eady JJ, Ross GM, Steel GG. (1995) The comet moment as a measure of DNA damage in the comet assay. Int J Radiat Biol 67: 655-660.
163. Kim C, Snyder RO, Wold MS, (1992) Binding properties of replication protein A from human and yeast cells. Mol Cell Biol 12: 3050-3059.
164. Kitchin KT, (2001) Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicol Appl Pharmacol 172: 249-261.
165. Klungland A, Lindahl T, (1997) Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). Embo J 16: 3341-3348.
166. Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G, Epe B, Seeberg E, Lindahl T, (1999) Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Natl Acad Sci U S A 96: 13300-13305.
167. Kohda K, Tada M, Kasai H, Nishimura S, Kawazoe Y, (1986) Formation of 8-hydroxyguanine residues in cellular DNA exposed to the carcinogen 4-nitroquinoline 1-oxide. Biochem Biophys Res Commun 139: 626-632.
168. Kohn KW, (1991) Principles and practice of DNA filter elution. Pharmacol Ther 49: 55-77.
169. Kolodner RD, (1995) Mismatch repair: mechanisms and relationship to cancer susceptibility. Trends Biochem Sci 20: 397-401.
170. Kovacs E, Almendral A, (1987) Reduced DNA repair synthesis in healthy women having first degree relatives with breast cancer. Eur J Cancer Clin Oncol 23: 1051-1057.
171. Kovacs E, Langemann H, (1991) Differences in the kinetics of DNA repair in cancer patients and healthy controls. Oncology 48: 312-316.
172. Krokan HE, Standal R, Slupphaug G, (1997) DNA glycosylases in the base excision repair of DNA. Biochem J 325: 1-16.
173. Kubota Y, Nash RA, Klungland A, Schar P, Barnes DE, Lindahl T, (1996) Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. Embo J 15: 6662-6670.
174. Kysela BP, Michael BD, Arrand JE, (1993) Relative contributions of levels of initial DNA damage and repair of double strand breaks to the ionizing radiation-sensitive phenotype of the Chinese hamster cell mutant, XR-V15B. Part I. X-rays. Int J Radiat Biol 63: 609-616.
175. Lai MS, Hsueh YM, Chen CJ, Shyu MP, Chen SY, Kuo TL, Wu MM, Tai TY, (1994) Ingested inorganic arsenic and prevalence of diabetes mellitus. Am J Epidemiol 139: 484-492.
176. Landolph JR, (1989) Molecular and cellular mechanisms of transformation of C3H/10T1/2 Cl 8 and diploid human fibroblasts by unique carcinogenic, nonmutagenic metal compounds. A review. Biol Trace Elem Res 21: 459-467.
177. Laval F, Wink DA, (1994) Inhibition by nitric oxide of the repair protein, O6-methylguanine-DNA-methyltransferase. Carcinogenesis 15: 443-447.
178. Lawley PD, (1989) Mutagens as carcinogens: development of current concepts. Mutat Res 213: 3-25.
179. Leadon SA, Hanawalt PC, (1983) Monoclonal antibody to DNA containing thymine glycol. Mutat Res 112: 191-200.
180. Lee TC, Ho IC, (1995) Modulation of cellular antioxidant defense activities by sodium arsenite in human fibroblasts. Arch Toxicol 69: 498-504.
181. Lee TC, Huang RY, Jan KY, (1985) Sodium arsenite enhances the cytotoxicity, clastogenicity, and 6-thioguanine-resistant mutagenicity of ultraviolet light in Chinese hamster ovary cells. Mutat Res 148: 83-89.
182. Lee TC, Kao SL, Yih LH, (1991) Suppression of sodium arsenite-potentiated cytotoxicity of ultraviolet light by cycloheximide in Chinese hamster ovary cells. Arch Toxicol 65: 640-645.
183. Lee TC, Lee KC, Tzeng YJ, Huang RY, Jan KY, (1986a) Sodium arsenite potentiates the clastogenicity and mutagenicity of DNA crosslinking agents. Environ Mutagen 8: 119-128.
184. Lee TC, Oshimura M, Barrett JC, (1985) Comparison of arsenic-induced cell transformation, cytotoxicity, mutation and cytogenetic effects in Syrian hamster embryo cells in culture. Carcinogenesis 6: 1421-1426.
185. Lee TC, Tanaka N, Lamb PW, Gilmer TM, Barrett JC, (1988) Induction of gene amplification by arsenic. Science 241: 79-81.
186. Lee TC, Wang-Wuu S, Huang RY, Lee KC, Jan KY, (1986b) Differential effects of pre- and posttreatment of sodium arsenite on the genotoxicity of methyl methanesulfonate in Chinese hamster ovary cells. Cancer Res 46: 1854-1857.
187. Lee YJ, Curetty L, Corry PM, (1991) Differences in preferential synthesis and redistribution of HSP70 and HSP28 families by heat or sodium arsenite in Chinese hamster ovary cells. J Cell Physiol 149: 77-87.
188. Lee-Chen SF, Gurr JR, Lin IB, Jan KY, (1993) Arsenite enhances DNA double-strand breaks and cell killing of methyl methanesulfonate-treated cells by inhibiting the excision of alkali-labile sites. Mutat Res 294: 21-28.
189. Lee-Chen SF, Yu CT, Jan KY, (1992) Effect of arsenite on the DNA repair of UV-irradiated Chinese hamster ovary cells. Mutagenesis 7: 51-55.
190. Lee-Chen SF, Yu CT, Wu DR, Jan KY, (1994) Differential effects of luminol, nickel, and arsenite on the rejoining of ultraviolet light and alkylation-induced DNA breaks. Environ Mol Mutagen 23: 116-120.
191. Lehmann AR, (1995) Nucleotide excision repair and the link with transcription. Trends Biochem Sci 20: 402-405.
192. Lehmann AR, (1998) Dual functions of DNA repair genes: molecular, cellular, and clinical implications. Bioessays 20: 146-155.
193. Levin DS, Bai W, Yao N, O'Donnell M, Tomkinson AE, (1997) An interaction between DNA ligase I and proliferating cell nuclear antigen: implications for Okazaki fragment synthesis and joining. Proc Natl Acad Sci U S A 94: 12863-12868.
194. Li D, Morimoto K, Takeshita T, Lu Y, (2001) Formamidopyrimidine-DNA glycosylase enhances arsenic-induced DNA strand breaks in PHA-stimulated and unstimulated human lymphocytes. Environ Health Perspect 109: 523-526.
195. Li JH, Rossman TG, (1989) Mechanism of comutagenesis of sodium arsenite with n-methyl-n-nitrosourea. Biol Trace Elem Res 21: 373-381.
196. Li Q, Laval J, Ludlum DB, (1997) Fpg protein releases a ring-opened N-7 guanine adduct from DNA that has been modified by sulfur mustard. Carcinogenesis 18: 1035-1038.
197. Liang F, Romanienko PJ, Weaver DT, Jeggo PA, Jasin M, (1996) Chromosomal double-strand break repair in Ku80-deficient cells. Proc Natl Acad Sci U S A 93: 8929-3893.
198. Lin JJ, Sancar A, (1992) (A)BC excinuclease: the Escherichia coli nucleotide excision repair enzyme. Mol Microbiol 6: 2219-2224.
199. Lin TH, Huang YL, Wang MY, (1998) Arsenic species in drinking water, hair, fingernails, and urine of patients with blackfoot disease. J Toxicol Environ Health A 53: 85-93.
200. Lindahl T, (1974) An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc Natl Acad Sci U S A 71: 3649-3653.
201. Lindahl T, Barnes DE, (1992) Mammalian DNA ligases. Annu Rev Biochem 61: 251-281.
202. Lindahl T, Wood RD, (1999) Quality control by DNA repair. Science 286: 1897-1905.
203. Lippke JA, Gordon LK, Brash DE, Haseltine WA, (1981) Distribution of UV light-induced damage in a defined sequence of human DNA: detection of alkaline-sensitive lesions at pyrimidine nucleoside-cytidine sequences. Proc Natl Acad Sci U S A 78: 3388-3392.
204. Liu F, Jan KY, (2000) DNA damage in arsenite- and cadmium-treated bovine aortic endothelial cells. Free Radic Biol Med 28: 55-63.
205. Liu J, Liu Y, Goyer RA, Achanzar W, Waalkes MP, (2000) Metallothionein-I/II null mice are more sensitive than wild-type mice to the hepatotoxic and nephrotoxic effects of chronic oral or injected inorganic arsenicals. Toxicol Sci 55: 460-467.
206. Liu YC, Huang H, (1996) Lowering extracellular calcium content protects cells from arsenite-induced killing and micronuclei formation. Mutagenesis 11: 75-78.
207. Liu YC, Huang H, (1997) Involvement of calcium-dependent protein kinase C in arsenite-induced genotoxicity in Chinese hamster ovary cells. J Cell Biochem 64: 423-433.
208. Lober G, (1977) Effect of ultraviolet and visible light on nucleic acids and proteins. Z Gesamte Inn Med 32: 133-138.
209. Loeb LA, Preston BD, (1986) Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet 20: 201-230.
210. Lynn S, Gurr JR, Lai HT, Jan KY, (2000) NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Circ Res 86: 514-519.
211. Lynn S, Lai HT, Gurr JR, Jan KY, (1997) Arsenite retards DNA break rejoining by inhibiting DNA ligation. Mutagenesis 12: 353-358.
212. Lynn S, Shiung JN, Gurr JR, Jan KY, (1998) Arsenite stimulates poly(ADP-ribosylation) by generation of nitric oxide. Free Radic Biol Med 24: 442-449.
213. Mahajan SK, Aggarwal HK, Wig N, Maitra S, Chugh SN, (1992) Arsenic induced neuropathy. J Assoc Physicians India 40: 268-269.
214. Malachi T, Zevin D, Gafter U, Chagnac A, Slor H, Levi J, (1993) DNA repair and recovery of RNA synthesis in uremic patients. Kidney Int 44: 385-389.
215. Malins DC, Haimanot R, (1991) Major alterations in the nucleotide structure of DNA in cancer of the female breast. Cancer Res 51: 5430-5432.
216. Maloney ME, (1996) Arsenic in Dermatology. Dermatol Surg 22: 301-304.
217. Marra G, Schar P, (1999) Recognition of DNA alterations by the mismatch repair system. Biochem J 338 ( Pt 1): 1-13.
218. Marumo T, Schini-Kerth VB, Fisslthaler B, Busse R, (1997) Platelet-derived growth factor-stimulated superoxide anion production modulates activation of transcription factor NF-kappaB and expression of monocyte chemoattractant protein 1 in human aortic smooth muscle cells. Circulation 96: 2361-2367.
219. Masuya Y, Hioki K, Tokunaga R, Taketani S, (1998) Involvement of the tyrosine phosphorylation pathway in induction of human heme oxygenase-1 by hemin, sodium arsenite, and cadmium chloride. J Biochem (Tokyo) 124: 628-633.
220. Matsui M, Nishigori C, Toyokuni S, Takada J, Akaboshi M, Ishikawa M, Imamura S, Miyachi Y, (1999) The role of oxidative DNA damage in human arsenic carcinogenesis: detection of 8-hydroxy-2'-deoxyguanosine in arsenic-related Bowen's disease. J Invest Dermatol 113: 26-31.
221. Matsumoto Y, Kim K, Hurwitz J, Gary R, Levin DS, Tomkinson AE, Park MS, (1999) Reconstitution of proliferating cell nuclear antigen-dependent repair of apurinic/apyrimidinic sites with purified human proteins. J Biol Chem 274: 33703-33708.
222. May A, Nairn RS, Okumoto DS, Wassermann K, Stevnsner T, Jones JC, Bohr VA, (1993) Repair of individual DNA strands in the hamster dihydrofolate reductase gene after treatment with ultraviolet light, alkylating agents, and cisplatin. J Biol Chem 268: 1650-1657.
223. McCready S, (1994) Repair of 6-4 photoproducts and cyclobutane pyrimidine dimers in rad mutants of Saccharomyces cerevisiae. Mutat Res 315: 261-273.
224. McWhir J, Selfridge J, Harrison DJ, Squires S, Melton DW, (1993) Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nat Genet 5: 217-224.
225. Menichini P, Fronza G, Tornaletti S, Galiegue-Zouitina S, Bailleul B, Loucheux-Lefebvre MH, Abbondandolo A, Pedrini AM, (1989) In vitro DNA modification by the ultimate carcinogen of 4-nitroquinoline-1-oxide: influence of superhelicity. Carcinogenesis 10: 1589-1593.
226. Milner AE, Vaughan AT, Clark IP, (1987) Measurement of DNA damage in mammalian cells using flow cytometry. Radiat Res 110: 108-117.
227. Mirzayans R, Bashir S, Murray D, Paterson MC, (1999) Inverse correlation between p53 protein levels and DNA repair efficiency in human fibroblast strains treated with 4-nitroquinoline 1-oxide: evidence that lesions other than DNA strand breaks trigger the p53 response. Carcinogenesis 20: 941-946.
228. Mitchell DL, (1988) The relative cytotoxicity of (6-4) photoproducts and cyclobutane dimers in mammalian cells. Photochem Photobiol 48: 51-57.
229. Mitchell DL, Brash DE, Nairn RS, (1990) Rapid repair kinetics of pyrimidine(6-4)pyrimidone photoproducts in human cells are due to excision rather than conformational change. Nucleic Acids Res 18: 963-971.
230. Mitchell DL, Nairn RS, (1989) The biology of the (6-4) photoproduct. Photochem Photobiol 49: 805-819.
231. Mitra S, Kaina B, (1993) Regulation of repair of alkylation damage in mammalian genomes. Prog Nucleic Acid Res Mol Biol 44: 109-142.
232. Modrich P, (1991) Mechanisms and biological effects of mismatch repair. Annu Rev Genet 25: 229-253.
233. Modrich P, Lahue R, (1996) Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 65: 101-133.
234. Mol CD, Parikh SS, Putnam CD, Lo TP, Tainer JA, (1999) DNA repair mechanisms for the recognition and removal of damaged DNA bases. Annu Rev Biophys Biomol Struct 28: 101-128.
235. Morales KH, Ryan L, Kuo TL, Wu MM, Chen CJ, (2000) Risk of internal cancers from arsenic in drinking water. Environ Health Perspect 108: 655-661.
236. Mori H, Haruyama S, Shinozaki Y, Sakamoto H, Chujyo M, Kuwahira I, (1993) [Practice of the flow measurement using nonradioactive microspheres and X-ray fluorescence spectrometer]. Kokyu To Junkan 41: 447-450.
237. Morikawa T, Wanibuchi H, Morimura K, Ogawa M, Fukushima S, (2000) Promotion of skin carcinogenesis by dimethylarsinic acid in keratin (K6)/ODC transgenic mice. Jpn J Cancer Res 91: 579-581.
238. Munch-Petersen B, Frentz G, (1985) X-ray and UV-radiation sensitivity of circulating lymphocytes in multiple epidermal cancer in relation to previous radiation exposure. Radiat Res 103: 432-440.
239. Nackerdien Z, Olinski R, Dizdaroglu M, (1992) DNA base damage in chromatin of gamma-irradiated cultured human cells. Free Radic Res Commun 16: 259-273.
240. Nagelhus TA, Haug T, Singh KK, Keshav KF, Skorpen F, Otterlei M, Bharati S, Lindmo T, (1997) A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A. J Biol Chem 272: 6561-6566.
241. Nash RA, Caldecott KW, Barnes DE, Lindahl T, (1997) XRCC1 protein interacts with one of two distinct forms of DNA ligase III. Biochemistry 36: 5207-5211.
242. National Research Council, (1999) Mechanism of Toxicity. Arsenic in Drinking Water. National Academy Press, Washingtom. DC. pp. 194-196.
243. Nealon K, Nicholl ID, Kenny MK, (1996) Characterization of the DNA polymerase requirement of human base excision repair. Nucleic Acids Res 24: 3763-3770.
244. Nguyen HT, Minton KW, (1988) Ultraviolet-induced dimerization of non-adjacent pyrimidines. A potential mechanism for the targeted -1 frameshift mutation. J Mol Biol 200: 681-693.
245. Nguyen T, Brunson D, Crespi CL, Penman BW, Wishnok JS, Tannenbaum SR, (1992) DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci U S A 89: 3030-3034.
246. Nichols AF, Sancar A, (1992) Purification of PCNA as a nucleotide excision repair protein. Nucleic Acids Res 20: 2441-2446.
247. Nickoloff JA, Spirio LN, Reynolds RJ, (1998) A comparison of calcium phosphate coprecipitation and electroporation. Implications for studies on the genetic effects of DNA damage. Mol Biotechnol 10: 93-101.
248. Nicolaides NC, Papadopoulos N, Liu B, Wei YF, Carter KC, Ruben SM, Rosen CA, Haseltine WA, (1994) Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371: 75-80.
249. Nikjoo H, O'Neill P, Goodhead DT, Terrissol M, (1997) Computational modelling of low-energy electron-induced DNA damage by early physical and chemical events. Int J Radiat Biol 71: 467-483.
250. Nishida C, Reinhard P, Linn S, (1988) DNA repair synthesis in human fibroblasts requires DNA polymerase delta. J Biol Chem 263: 501-510.
251. Nishio E, Watanabe Y, (1997) The involvement of reactive oxygen species and arachidonic acid in alpha 1-adrenoceptor-induced smooth muscle cell proliferation and migration. Br J Pharmacol 121: 665-670.
252. Nordenson I, Beckman L, (1982) Occupational and environmental risks in and around a smelter in northern Sweden. VII. Reanalysis and follow-up of chromosomal aberrations in workers exposed to arsenic. Hereditas 96: 175-181.
253. Nordenson I, Beckman L, (1991) Is the genotoxic effect of arsenic mediated by oxygen free radicals? Hum Hered 41: 71-73.
254. Norris PG, Limb GA, Hamblin AS, Lehmann AR, Arlett CF, Cole J, Waugh AP, Hawk JL, (1990) Immune function, mutant frequency, and cancer risk in the DNA repair defective genodermatoses xeroderma pigmentosum, Cockayne's syndrome, and trichothiodystrophy. J Invest Dermatol 94: 94-100.
255. Nose K, Okamoto H, (1983) Detection of carcinogen-induced DNA breaks by nick translation in permeable cells. Biochem Biophys Res Commun 111: 383-389.
256. Nygren J, Cedervall B, Eriksson S, Dusinska M, Kolman A, (1994) Induction of DNA strand breaks by ethylene oxide in human diploid fibroblasts. Environ Mol Mutagen 24: 161-167.
257. O'Donovan A, Davies AA, Moggs JG, West SC, Wood RD, (1994a) XPG endonuclease makes the 3' incision in human DNA nucleotide excision repair. Nature 371: 432-435.
258. O'Donovan A, Scherly D, Clarkson SG, Wood RD, (1994b) Isolation of active recombinant XPG protein, a human DNA repair endonuclease. J Biol Chem 269: 15965-15968.
259. Okui T, Fujiwara Y, (1986) Inhibition of human excision DNA repair by inorganic arsenic and the co-mutagenic effect in V79 Chinese hamster cells. Mutat Res 172: 69-76.
260. Oleinick NL, Chiu SM, Ramakrishnan N, Xue LY, (1987) The formation, identification, and significance of DNA-protein cross-links in mammalian cells. Br J Cancer Suppl 8: 135-140.
261. Olive PL, Banath JP, MacPhail HS, (1994) Lack of a correlation between radiosensitivity and DNA double-strand break induction or rejoining in six human tumor cell lines. Cancer Res 54: 3939-3946.
262. Ostling O, Johanson KJ, (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123: 291-298.
263. Otterlei M, Warbrick E, Nagelhus TA, Haug T, Slupphaug G, Akbari M, Aas PA, Steinsbekk K, (1999) Post-replicative base excision repair in replication foci. Embo J 18: 3834-3844.
264. Padgett CM, Whorton AR, (1998) Cellular responses to nitric oxide: role of protein S-thiolation/dethiolation. Arch Biochem Biophys 358: 232-242.
265. Papadopoulos N, Nicolaides NC, Wei YF, Ruben SM, Carter KC, Rosen CA, Haseltine WA, Fleischmann RD, (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263: 1625-1629.
266. Paquis-Flucklinger V, Santucci-Darmanin S, Paul R, Saunieres A, Turc-Carel C, Desnuelle C, (1997) Cloning and expression analysis of a meiosis-specific MutS homolog: the human MSH4 gene. Genomics 44: 188-194.
267. Park CH, Mu D, Reardon JT, Sancar A, (1995) The general transcription-repair factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor. J Biol Chem 270: 4896-4902.
268. Pascucci B, Stucki M, Jonsson ZO, Dogliotti E, Hubscher U, (1999) Long patch base excision repair with purified human proteins. DNA ligase I as patch size mediator for DNA polymerases delta and epsilon. J Biol Chem 274: 33696-33702.
269. Patrick WK, (2000) Global health challenges: trends in public health training, research and advocacy. Asia Pac J Public Health, 12: S8-12.
270. Patterson C, Ruef J, Madamanchi NR, Barry-Lane P, Hu Z, Horaist C, Ballinger CA, Brasier AR, (1999) Stimulation of a vascular smooth muscle cell NAD(P)H oxidase by thrombin. Evidence that p47(phox) may participate in forming this oxidase in vitro and in vivo. J Biol Chem 274: 19814-19822.
271. Penn A, Garte SJ, Warren L, Nesta D, Mindich B, (1986) Transforming gene in human atherosclerotic plaque DNA. Proc Natl Acad Sci U S A 83: 7951-7955.
272. Pero RW, Miller DG, Lipkin M, Markowitz M, Gupta S, Winawer SJ, Enker W, Good R, (1983) Reduced capacity for DNA repair synthesis in patients with or genetically predisposed to colorectal cancer. J Natl Cancer Inst 70: 867-875.
273. Pershagen G, Bencko V, (1997) Environmental health effects in the East Baltic Region--assessment and prevention. Stockholm 27-29 April 1997. Cent Eur J Public Health 5: 219-220.
274. Petrini JH, Xiao Y, Weaver DT, (1995) DNA ligase I mediates essential functions in mammalian cells. Mol Cell Biol 15: 4303-4308.
275. Pi J, Kumagai Y, Sun G, Yamauchi H, Yoshida T, Iso H, Endo A, Yu L, (2000) Decreased serum concentrations of nitric oxide metabolites among Chinese in an endemic area of chronic arsenic poisoning in inner Mongolia. Free Radic Biol Med 28: 1137-1142.
276. Podust LM, Podust VN, Floth C, Hubscher U, (1994) Assembly of DNA polymerase delta and epsilon holoenzymes depends on the geometry of the DNA template. Nucleic Acids Res 22: 2970-2975.
277. Popanda O, Thielmann HW, (1992) The function of DNA polymerases in DNA repair synthesis of ultraviolet-irradiated human fibroblasts. Biochim Biophys Acta 1129: 155-160.
278. Protic-Sabljic M, Kraemer KH, (1985) One pyrimidine dimer inactivates expression of a transfected gene in xeroderma pigmentosum cells. Proc Natl Acad Sci U S A 82: 6622-6626.
279. Radi R, Rodriguez M, Castro L, Telleri R, (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308: 89-95.
280. Rahman M, Tondel M, Ahmad SA, Chowdhury IA, Faruquee MH, Axelson O, (1999) Hypertension and arsenic exposure in Bangladesh. Hypertension 33: 74-78.
281. Rainbow AJ, (1980) Reduced capacity to repair irradiated adenovirus in fibroblasts from xeroderma pigmentosum heterozygotes. Cancer Res 40: 3945-3949.
282. Rainbow AJ, (1989) Defective repair of UV-damaged DNA in human tumor and SV40-transformed human cells but not in adenovirus-transformed human cells. Carcinogenesis 10: 1073-1077.
283. Rao GN, Lassegue B, Griendling KK, Alexander RW, Berk BC, (1993) Hydrogen peroxide-induced c-fos expression is mediated by arachidonic acid release: role of protein kinase C. Nucleic Acids Res 21: 1259-1263.
284. Reardon JT, Nichols AF, Keeney S, Smith CA, Taylor JS, Linn S, Sancar A, (1993) Comparative analysis of binding of human damaged DNA-binding protein (XPE) and Escherichia coli damage recognition protein (UvrA) to the major ultraviolet photoproducts: T[c,s]T, T[t,s]T, T[6-4]T, and T[Dewar]T. J Biol Chem 268: 21301-21308.
285. Robins P, Jones CJ, Biggerstaff M, Lindahl T, Wood RD, (1991) Complementation of DNA repair in xeroderma pigmentosum group A cell extracts by a protein with affinity for damaged DNA. Embo J 10: 3913-3921.
286. Roots R, Okada S, (1972) Protection of DNA molecules of cultured mammalian cells from radiation-induced single-strand scissions by various alcohols and SH compounds. Int J Radiat Biol Relat Stud Phys Chem Med 21: 329-342.
287. Ross R, (1995) Growth regulatory mechanisms and formation of the lesions of atherosclerosis. Ann N Y Acad Sci 748: 1-4; discussion 4-6.
288. Rossman TG, Stone D, Molina M, Troll W, (1980) Absence of arsenite mutagenicity in E coli and Chinese hamster cells. Environ Mutagen 2: 371-379.
289. Rossman TG, Uddin AN, Burns FJ, Bosland MC, (2001) Arsenite is a cocarcinogen with solar ultraviolet radiation for mouse skin: an animal model for arsenic carcinogenesis. Toxicol Appl Pharmacol 176: 64-71.
290. Rossman TG, Wolosin D, (1992) Differential susceptibility to carcinogen-induced amplification of SV40 and dhfr sequences in SV40-transformed human keratinocytes. Mol Carcinog 6: 203-213.
291. Roy R, Schaeffer L, Humbert S, Vermeulen W, Weeda G, Egly JM, (1994) The DNA-dependent ATPase activity associated with the class II basic transcription factor BTF2/TFIIH. J Biol Chem 269: 9826-9832.
292. Rycyna RE, Alderfer JL, (1985) UV irradiation of nucleic acids: formation, purification and solution conformational analysis of the '6-4 lesion' of dTpdT. Nucleic Acids Res 13: 5949-5963.
293. Salgo MG, Squadrito GL, Pryor WA, (1995) Peroxynitrite causes apoptosis in rat thymocytes. Biochem Biophys Res Commun 215: 1111-1118.
294. Sancar A, Hearst JE, (1993) Molecular matchmakers. Science 259: 1415-1420.
295. Sapora O, Barone F, Belli M, Maggi A, Quintiliani M, Tabocchini MA, (1991) Relationships between cell killing, mutation induction and DNA damage in X-irradiated V79 cells: the influence of oxygen and DMSO. Int J Radiat Biol 60: 467-482.
296. Sarker AH, Ikeda S, Nakano H, Terato H, Ide H, Imai K, Akiyama K, Tsutsui K, (1998) Cloning and characterization of a mouse homologue (mNthl1) of Escherichia coli endonuclease III. J Mol Biol 282: 761-774.
297. Schaeffer L, Moncollin V, Roy R, Staub A, Mezzina M, Sarasin A, Weeda G, Hoeijmakers JH, (1994) The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. Embo J 13: 2388-2392.
298. Schaeffer L, Roy R, Humbert S, Moncollin V, Vermeulen W, Hoeijmakers JH, Chambon P, Egly JM, (1993) DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260: 58-63.
299. Scherly D, Nouspikel T, Corlet J, Ucla C, Bairoch A, Clarkson SG, (1993) Complementation of the DNA repair defect in xeroderma pigmentosum group G cells by a human cDNA related to yeast RAD2. Nature 363: 182-185.
300. Selden JR, Dolbeare F, Clair JH, Nichols WW, Miller JE, Kleemeyer KM, Hyland RJ, DeLuca JG, (1993) Statistical confirmation that immunofluorescent detection of DNA repair in human fibroblasts by measurement of bromodeoxyuridine incorporation is stoichiometric and sensitive. Cytometry 14: 154-167.
301. Shapiro R, Dubelman S, Feinberg AM, Crain PF, McCloskey JA, (1977) Isolation and identification of cross-linked nucleosides from nitrous acid treated deoxyribonucleic acid. J Am Chem Soc 99: 302-303.
302. Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY, Zhu J, Tang W, (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 89: 3354-3360.
303. Shivji KK, Kenny MK, Wood RD, (1992) Proliferating cell nuclear antigen is required for DNA excision repair. Cell 69: 367-74.
304. Shivji MK, Podust VN, Hubscher U, Wood RD, (1995) Nucleotide excision repair DNA synthesis by DNA polymerase epsilon in the presence of PCNA, RFC, and RPA. Biochemistry 34: 5011-5017.
305. Sijbers AM, de Laat WL, Ariza RR, Biggerstaff M, Wei YF, Moggs JG, Carter KC, Shell BK, (1996) Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86: 811-822.
306. Simic MG, (1994) DNA markers of oxidative processes in vivo: relevance to carcinogenesis and anticarcinogenesis. Cancer Res 54: 1918s-1923s.
307. Simic MG, Jovanovic SV, (1986) Free radical mechanisms of DNA base damage. Basic Life Sci 38: 39-49.
308. Singer B, (1983) Mutagenic effects of nucleic acid modification and repair assessed by in vitro transcription. Basic Life Sci 23: 1-34.
309. Singh NP, McCoy MT, Tice RR, Schneider EL, (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175: 184-191.
310. Singh RJ, Hogg N, Joseph J, Kalyanaraman B, (1996) Mechanism of nitric oxide release from S-nitrosothiols. J Biol Chem 271: 18596-18603.
311. Snyder RD, Lachmann PJ, (1989) Thiol involvement in the inhibition of DNA repair by metals in mammalian cells. Mol Toxicol 2: 117-128.
312. Snyderwine EG, Bohr VA, (1992) Gene- and strand-specific damage and repair in Chinese hamster ovary cells treated with 4-nitroquinoline 1-oxide. Cancer Res 52: 4183-4189.
313. So HS, Park RK, Kim MS, Lee SR, Jung BH, Chung SY, Jun CD, Chung HT, (1998) Nitric oxide inhibits c-Jun N-terminal kinase 2 (JNK2) via S-nitrosylation. Biochem Biophys Res Commun 247: 809-813.
314. Sobol RW, Horton JK, Kuhn R, Gu H, Singhal RK, Prasad R, Rajewsky K, Wilson SH, (1996) Requirement of mammalian DNA polymerase-beta in base-excision repair. Nature 379: 183-186.
315. Sobol RW, Prasad R, Evenski A, Baker A, Yang XP, Horton JK, Wilson SH, (2000) The lyase activity of the DNA repair protein beta-polymerase protects from DNA-damage-induced cytotoxicity. Nature 405: 807-810.
316. Spitz MR, Lippman SM, Jiang H, Lee JJ, Khuri F, Hsu TC, Trizna Z, Schantz SP, (1998) Mutagen sensitivity as a predictor of tumor recurrence in patients with cancer of the upper aerodigestive tract. J Natl Cancer Inst 90: 243-245.
317. Stamato TD, Denko N, (1990) Asymmetric field inversion gel electrophoresis: a new method for detecting DNA double-strand breaks in mammalian cells. Radiat Res 121: 196-205.
318. Steinberg D, (1997) Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 272: 20963-20966.
319. Strniste GF, Rall SC, (1976) Induction of stable protein-deoxyribonucleic acid adducts in Chinese hamster cell chromatin by ultraviolet light. Biochemistry 15: 1712-1719.
320. Stucki M, Pascucci B, Parlanti E, Fortini P, Wilson SH, Hubscher U, Dogliotti E, (1998) Mammalian base excision repair by DNA polymerases delta and epsilon. Oncogene 17: 835-843.
321. Sugasawa K, Ng JM, Masutani C, Iwai S, van der Spek PJ, Eker AP, Hanaoka F, Bootsma D, (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 2: 223-232.
322. Sung P, Bailly V, Weber C, Thompson LH, Prakash L, Prakash S, (1993) Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature 365: 852-855.
323. Suzuki T, Yamada M, Ishida T, Morii T, Makino K, (1999) Reactivity of 2'-deoxyoxanosine, a novel DNA lesion. Nucleic Acids Symp Ser: 7-8.
324. Suzuki T, Yamada M, Kanaori K, Tajima K, Morii T, Makino K, (1999) Formation of 8-nitroguanine from 2'-deoxyguanosine by NO/O2 system. Nucleic Acids Symp Ser: 155-156.
325. Svoboda DL, Taylor JS, Hearst JE, Sancar A, (1993) DNA repair by eukaryotic nucleotide excision nuclease. Removal of thymine dimer and psoralen monoadduct by HeLa cell-free extract and of thymine dimer by Xenopus laevis oocytes. J Biol Chem 268: 1931-1936.
326. Syvaoja J, Suomensaari S, Nishida C, Goldsmith JS, Chui GS, Jain S, Linn S, (1990) DNA polymerases alpha, delta, and epsilon: three distinct enzymes from HeLa cells. Proc Natl Acad Sci U S A 87: 6664-6668.
327. Szymkowski DE, Hajibagheri MA, Wood RD, (1993) Electron microscopy of DNA excision repair patches produced by human cell extracts. J Mol Biol 231: 251-260.
328. Takahashi S, Takeda E, Kubota Y, Okayasu R, (2000) Inhibition of repair of radiation-induced DNA double-strand breaks by nickel and arsenite. Radiat Res 154: 686-691.
329. Tamir S, deRojas-Walker T, Wishnok JS, Tannenbaum SR, (1996) DNA damage and genotoxicity by nitric oxide. Methods Enzymol 269: 230-243.
330. Tanaka K, (1989) [DNA repair defect in xeroderma pigmentosum]. Gan To Kagaku Ryoho 16: 473-480.
331. Tanaka K, Miura N, Satokata I, Miyamoto I, Yoshida MC, Satoh Y, Kondo S, Yasui A. (1990) Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Nature 348: 73-76.
332. Tani M, Shinmura K, Kohno T, Shiroishi T, Wakana S, Kim SR, Nohmi T, Kasai H, (1998) Genomic structure and chromosomal localization of the mouse Ogg1 gene that is involved in the repair of 8-hydroxyguanine in DNA damage. Mamm Genome 9: 32-37.
333. Taylor JS, Garrett DS, Wang MJ, (1988) Models for the solution state structure of the (6-4) photoproduct of thymidylyl-(3'----5')-thymidine derived via a distance- and angle-constrained conformation search procedure. Biopolymers 27: 1571-1593.
334. Tchou J, Kasai H, Shibutani S, Chung MH, Laval J, Grollman AP, Nishimura S, (1991) 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc Natl Acad Sci U S A 88: 4690-4694.
335. Th'ng JP, Walker IG, (1986) Excision repair of DNA in the presence of aphidicolin. Mutat Res 165: 139-150.
336. Thomas DC, Roberts JD, Sabatino RD, Myers TW, Tan CK, Downey KM, So AG, Bambara RA, (1991) Fidelity of mammalian DNA replication and replicative DNA polymerases. Biochemistry 30: 11751-11759.
337. Thompson LH, West MG, (2000) XRCC1 keeps DNA from getting stranded. Mutat Res 459: 1-18.
338. Thornton I, Farago M, (1997) The geochemistry of arsenic. In Abernathy, C.O., Calderon, RL, Chappell, WR, (eds) Arsenic, exposure and health effects. Chapman & Hall, NY, pp. 1-16.
339. Timme TL, Moses RE, (1988) Diseases with DNA damage-processing defects. Am J Med Sci 295: 40-48.
340. Tomkinson AE, Chen L, Dong Z, Leppard JB, Levin DS, Mackey ZB, Motycka TA, (2001) Completion of base excision repair by mammalian DNA ligases. Prog Nucleic Acid Res Mol Biol 68: 151-164.
341. Tomkinson AE, Mackey ZB, (1998) Structure and function of mammalian DNA ligases. Mutat Res 407: 1-9.
342. Tornaletti S, Hanawalt PC, (1999) Effect of DNA lesions on transcription elongation. Biochimie 81: 139-146.
343. Tseng WP, (1977) Effects and dose--response relationships of skin cancer and blackfoot disease with arsenic. Environ Health Perspect 19: 109-119.
344. Tseng WP, Chu HM, How SW, Fong JM, Lin CS, Yeh S, (1968) Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst 40: 453-463.
345. Tuteja N, Tuteja R, (2001) Unraveling DNA repair in human: m
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top