跳到主要內容

臺灣博碩士論文加值系統

(44.200.175.255) 您好!臺灣時間:2022/08/11 12:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張惠娟
研究生(外文):Hui-Chuan Chang
論文名稱:金屬離子結合對鴿肝蘋果酸脢結構安定性之探討
論文名稱(外文):Effect of metal bindingon the structure of pigeon liver malic enzyme
指導教授:張固剛
指導教授(外文):Gu-Gang Chang
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:159
中文關鍵詞:金屬離子鴿肝蘋果酸脢結構安定性
外文關鍵詞:metalmalic enzymestructurestability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
鴿肝蘋果酸_(EC 1.1.1.40)在二價金屬離子(錳或鎂)和輔_
NADP+存在下,將L-蘋果酸氧化脫酸羧形成丙酮酸及二氧化碳,並將輔_NADP還原成NADPH。此_之立體結構利用X光繞射法於2002年解出。我們藉由加入化學變性劑(尿素)後,觀察此_結構的安定性,藉由橢圓偏極光譜儀、螢光光譜儀及分析級超高速離心機等儀器,我們分別偵測鴿肝蘋果酸_的二級、三級及四級結構變化,同時探討二價金屬離子在結構安定性上所扮演的角色。我們觀察到鴿肝蘋果酸_以不同濃度的尿素處理後,其二級和三級結構的變化呈雙相式(biphasic),於4-5 M尿素濃度下,有一個安定的中間狀態存在。低濃度的尿素溶液(1 M)會提高鴿肝蘋果酸_的活性,但尿素濃度持續增加至中間出現前,則_活性完全喪失。這可能表示_的活性中心結構較不安定,較其他區域結構易受化學變性劑影響。若於變性過程中加入4 mM錳離子,則變性過程由雙相式變成單相式(monophasic)。在第一階段的變性過程中,錳離子與_分子結合後,可提高鴿肝蘋果酸脢_對尿素的耐受性,使一半的_活性喪失的尿素濃度([urea]0.5)從2.2 M增加至3.8 M。再利用分析級超高速離心機觀察變性過程中的四級結構變化,發現沒有錳離子的情況下,隨著尿素濃度增加鴿肝蘋果酸_易解離成雙聚體。於4-5 M尿素濃度下生成多聚體(polymer)。當尿素濃度增加至6 M,則可觀察到多聚體鬆解為單聚體。當加入錳離子後,可延緩多聚體的生成。因此錳離子應有穩定鴿肝蘋果酸_的四級結構的功能。我們再以定點突變法加以證實此推論。將金屬結合位的胺基酸突變後(E234Q、D235N及E234QD235N),則不論加錳或不加錳離子,尿素所誘發的變性過程皆呈現雙向前式。以上結果顯示錳離子不僅是催化過程所必需,同時具有穩定鴿肝蘋果酸_結構的功能。
為進一步觀察鴿肝蘋果酸_的結構特性,我們製備三種只含一個色胺酸的突變型鴿肝蘋果酸_(W129 (W321F/W548F)、W321 (W129F/W548F) 及W548 (W129F/W321F))。這三種突變_的CD光譜顯示,在未加入錳離子時,三種突變型鴿肝蘋果酸_以尿素誘發的變性過程皆為雙相式,加入錳離子後,W548的變性過程則與野性型相似,為單相式;而W129與W321仍為雙相式。由螢光光譜的變化,也可見到W129及W321的訊號並不因錳離子的加入而有所改變。只有W548與野生型相似,沒有錳離子存在下為雙相式,加入錳離子則呈單相式,所以W548的局部結構於變性過程中的改變應與四級結構的改變有密切關係。可更進一步說明的結果是在4.5 M尿素溶液中,若不含錳離子,則所有突變型鴿肝頻果酸_皆呈聚合體狀,若加入錳離子,則只野生型及W548不易生成聚合物,表示色胺酸-548突變後,易使_分子在變性過程中生成聚合物,只有色胺酸-548存在下,鴿肝蘋果酸_與金屬結合後,才具有穩定其四級結構的功能。因此本篇論文獲致兩個重要結論:一是在化學變性的過程中,金屬離子(錳)具有穩定結構的功能;二是C端的色胺酸-548為穩定四級結構的重要胺基
Pigeon liver malic enzyme (EC. 1.1.1.40) is a homotetrameric enzyme. Each monomer contains four structure domains. In this study, the structural stability of the enzyme was accessed by chemical stress and site-specific mutagenesis. Unfolding of the wild type enzyme by urea as monitored by both circular dichroism and fluorescence revealed biphasic conformational changes at 25 。 and pH 7.4. It showed an intermediate at 4-5 M urea. The enzyme activity was activated by urea up to 1 M but was completely lost before the intermediate was detected. These suggest that the active site region was more sensitive to chemical denaturant than other structure scaffolds. In the presence of 4 mM Mn2+, the urea denaturation pattern changed to monophasic. Mn2+ helped the enzyme to resist phase I urea denaturation. The [urea]0.5 for the enzyme inactivation shifted from 2.2 to 3.8 M. Molecular weight determination by the analytical ultracentrifuge indicated that the tetrameric enzyme was dissociated to dimers in the early stage of phase I denaturation. In the intermediate state at 4-5 M urea, the enzyme underwent polymerization. However, the polymer forms were dissociated to unfolded monomers at a urea concentration greater than 6 M. Mn2+ retarded the polymerization of the enzyme.
Three mutants of the enzyme with a defective metal ligand (E234Q, D235N, E234Q/D235N) were cloned and purified to homogeneity. These mutant malic enzymes showed a biphasic urea denaturation pattern in the absence or presence of Mn2+. These results indicated that the Mn2+ could stabilize the overall protein structure in chemical denaturation.
To further characterize this interesting phenomenon, three double-substituted mutants of the enzyme, namely W129 (W321F/W548F), W321 (W129F/W548F), and W548 (W129F/W321F)) were constructed, each with only one tryptophanyl residue left. Far UV-CD data showed biphasic urea unfolding process in all mutants in the absence of Mn2+. In the presence of 4 mM Mn2+, W548 and WT enzymes shifted to monophasic while W129 and W321 were still biphasic. When monitoring by the fluorescence spectral change, only W548 showed identical properties with the WT enzyme. Analytical ultracentrifugal analysis indicated that all tryptophan mutant enzymes were polymerized at 4.5 M urea, and Mn2+ provided protective effect on W548 and WT enzymes only. Other mutants with substituted W548 polymerized at 4.5 M urea in the absence or presence of 4 mM Mn2+.
In summary, this study has reached two important conclusions. The metal ion not only plays a catalytic role in stabilization of the reaction intermediate, enol-pyruvate, but also stabilizes the overall tetrameric protein architecture. A single tryptophanyl residue at 548, in the subunit interface, is responsible for the integrity of the quaternary structure of the pigeon malic enzyme.
CONTENTS
Page
CONTENTS i
FIGURE CONTENTS iv
TABLE CONTENTS vii
ABBREVIATION viii
CHINESE ABSTRACT 1
ENGLISH ABSTRACT 3
INTRODUCTION 5
Discovery and classification of malic enzymes 5
Biological function of malic enzymes 6
Kinetic characterization of malic enzyme 9
Structure of pigeon liver malic enzyme 10
Sequence alignment of metal binding ligands of malic enzyme 13
Role of metal ion in the chemical mechanism of malic enzyme 13
Metal binding related to the protein structure and stability 15
Aim and strategy of the present study 16
MATERIALS 18
METHODS 18
Site-directed mutagenesis 18
Expression of the recombinant pigeon liver malic enzyme 19
Purification of the recombinant pigeon liver malic enzyme 19
Enzyme assay and protein determination 20
Enzyme denaturation in urea solution 21
Heat stability 22
Data analysis for the denaturation process 22
Quenching of pigeon liver malic enzyme fluorescence by acrylamide 24
ANS binding measurement 25
Analytical ultracentrifugation analysis 25
RESULTS 27
Purification of recombinant wild type and various mutants pigeon liver
malic enzyme 27
Fluorescence and circular dichroism spectra of the recombinant pigeon liver
malic enzyme 27
Urea induced unfolding process of pigeon liver malic enzyme 28
Effect of metal binding on the urea induced unfolding of pigeon liver
malic enzyme 29
Metal effect on the mutant malic enzymes with a defective metal binding site 30
Thermostability of the recombinant malic enzymes 31
Conformational characterization of the intermediate state of malic enzyme
during urea denaturation 31
Quaternary structural changes of the malic enzyme during urea denaturation 32
Effect of substrate and cofactor on the structural stability of pigeon liver
malic enzyme 35
Renaturation of urea denatured pigeon liver malic enzyme 36
Structural characterization of the tryptophan mutants of pigeon liver
malic enzyme 36
Fluorescence spectral properties of the tryptophan mutants of
pigeon liver malic enzyme 37
Denaturation of wild type and tryptophan mutant malic enzymes monitored
by intrinsic fluorescence changes 38
Unfolding of wild type and tryptophan mutant malic enzymes monitored
by far-UV CD changes 39
Quaternary structural changes of the wild type and tryptophan mutant
malic enzymes during urea denaturation 39
DISCUSSION 41
REFERENCES 52
FIGURES 64
TABLES 151
APPENDIX 159
REFERENCES
Ayala, A., F-Lobato, M., and Machodo, A. (1986) Malic enzyme levels are increased by the activation of NADPH-consuming pathways: detoxification processes. FEBS Lett. 202, 102-106.
Baker, P. J., Thomas, D. H., Barton, C. H., Rice, D.W., and Bailey, E. (1987) Crystallization of an NADP+-dependent malic enzyme from rat liver. J. Mol. Biol. 193, 233-235.
Beasty, A. M., Hurle, M. R., Manz, J. T., Stackhouse, T., Onuffer, J. J., and Matthews, C. R. (1986) Effects of the phenylalanine-22-leucine, glutamic acid-49-methionine, glycine-234-aspartic acid, and glycine-234-lysine mutations on the folding and stability of the alpha subunit of tryptophan synthase from Escherichia coli. Biochemistry 25, 2965-2974.
Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal. Biochem. 72, 248-254.
Calhoun, D. B., Vanderkooi, J. M., and Englander, S. W. (1983) Penetration of small molecules into proteins studied by quenching of phosphorescence and fluorescence. Biochemistry 22, 1533-1539.
Casati, P., Drincovich, M. F., Edwards, G. E., and Andreo, C. S. (1999) Regulation of the expression of NADP-malic enzyme by UV-B, red and far-red light in maize seedlings. Brazilian J. Med. Biol. Res. 32, 1187-93.
Chang J. T., and Chang, G. G. (1982) Purification of pigeon liver malic enzyme by affinity chromatography. Anal. Biochem. 121, 366-369.
Chang, G. G., Huang, T. M., Huang, S. M., and Chou, W. Y. (1994) Dissociation of pigeon-liver malic enzyme in reverse micelles. Eur. J. Biochem. 225, 1021-1027.
Chang, G. G., Huang, T. M., Wang, J. K., Lee, H. J., Chou, W. Y., and Meng, C. L. (1992) Kinetic mechanism of the cytosolic malic enzyme from human breast cancer cell line. Arch. Biochem. Biophys. 296, 468-473.
Chang, G. G., Shiao, M. S., Liaw, J. G., and Lee, H, J. (1989) Periodate-oxidized aminopyridine adenine dinucleotide phosphate as a fluorescent affinity label for pigeon liver malic enzyme. J. Biol. Chem. 264, 280-287.
Chou, W. Y., Chai, W. B., Lin, C. C., and Chang, G. G. (1995) Selective oxidative modification and affinity cleavage of pigeon liver malic enzyme by the Cu(2+)-ascorbate system. J. Biol. Chem. 270, 25935-25941.
Chou, W. Y., Chang, H. P., Huang, C. H., Kuo, C. C., Tong, L., and Chang, G. G. (2000) Characterization of the functional role of Asp141, Asp194, and Asp464 residues in the Mn2+-L-malate binding of pigeon liver malic enzyme. Protein Sci. 9, 242-251.
Chou, W. Y., Huang, S. M., and Chang, G. G. (1997) Functional roles of the N-terminal amino acid residues in the Mn(II)-L-malate binding and subunit interactions of pigeon liver malic enzyme. Protein Eng. 10, 1205-1211.
Chou, W. Y., Huang, S. M., and Chang, G. G. (1998) Conformational stability of the N-terminal amino acid residues of mutated recombinant pigeon liver malic enzymes. Protein Eng. 11, 371-376.
Chou, W. Y., Huang, S. M., Liu, Y. H. and Chang, G. G. (1993) Cloning and expression of pigeon liver cytosolic NADP+-dependent malic enzyme cDNA. Proc. Ann. Conf. Biomed. Sci. 8th, Taipei, 71.
Chou, W. Y., Huang, S. M., Liu, Y.H., and Chang, G. G. (1994) Cloning and expression of pigeon liver cytosolic NADP(+)-dependent malic enzyme cDNA and some of its abortive mutants. Arch. Biochem. Biophys. 310, 158-166.
Chou, W. Y., Kuo, C. C., Hung, H. C., Huang, T. M., and Chang, G. G. (2001) Metal binding site of pigeon liver malic enzyme. J. Med. Sci. 21, 201-206.
Christianson, D. W. (1997) Structural chemistry and biology of manganese metalloenzymes. Prog. Biophys. Mol. Biol. 67, 217-252.
Clancy, L. L., and Einspahr, H. M. (1992) Crystallization of the NAD-dependent malic enzyme from the parastic nematode Ascarissuum. J. Mol. Biol. 226, 565-569.
Creighton, T. E. (1986) Detection of folding intermediates using urea-gradient electrophoresis. Meth. Enzymol. 131, 156-172.
Drincovich, M. F., Casati, P., and Andreo, C. S. (2001) NADP-malic enzyme from plants: a ubiquitous enzyme involved in different metabolic pathways. FEBS Lett. 490, 1-6.
Edwards, G. E., and Andreo, C. S. (1992) NADP-malic enzyme from plants. Phytochemistry 31, 1845-1857.
Eftink, M. R., and Ghiron, C. A. (1981) Fluorescence quenching studies with proteins. Anal. Biochem. 114, 199-227.
Fahien, L. A., and Teller, J. K. (1992) Glutamate-malate metabolism in liver mitochondria. J. Biol. Chem. 267, 10411-10422.
Fan, Y. X., Ju, M., Zhou, J. M., and Tsou, C. L. (1996) Activation of chicken liver dihydrofolate reductase by urea and guanidine hydrochloride is accompanied by conformational change at the active site. Biochem. J. 315, 97-102.
Feng, Y. Q., and Sligar, S. G. (1991) Effect of heme binding on the structure and stability of Escherichia coli apocytochrome b562. Biochemistry. 30, 10150-10155.
Fernandez, R. J., Civantos, F., Tress, E., Maltese, W. A., and De Vivo, D. C. (1986) Normal fibroblast mitochondrial malic enzyme activity in Friedreich掇 ataxia. Neurology 36, 869-872.
Frenkel, R. (1975) Regulation and physiological functions of malic enzymes. Curr. Top. Cellu. Regul. 9, 157-181.
Fukuda, H., Katsurada, A., and Iritani, N. (1990) Effects of aging on transcriptional and post-transcriptional regulation of malic enzyme and glucose-6-phosphate dehydrogenase in rat liver. Eur. J. Biochem. 188, 517-522.
Gavva, S. R., Harris, B. G., Weiss, P. M., and Cook, P. F. (1991). Modification of a thiol at the active site of the Ascaris suum NAD-malic enzyme results in changes in the rate-determining steps for oxidative decarboxylation of L-malate. Biochemistry 30, 5764-5769.
Hammarstrom, P., Persson, M., and Carlsson, U. (2001) Protein compactness measured by fluorescence resonance energy transfer. Human carbonic anhydrase ii is considerably expanded by the interaction of GroEL. J. Biol. Chem. 276, 21765-21775.
Hanna, R., and Doudna, J. A (2000) Metal ions in ribozyme folding and catalysis. Curr. Opin. Chemical Biol. 4, 166-170.
Hecht, B. R., Bardawil, W. A., Khan-Dawood, F. S., and Dawood, M. Y. (1990) Luteal insufficiency: correlation between endometrial dating and integrated progesterone output in clomiphene citrate-induced cycles. Amer. J. Obst. Gynecol. 163,1986-1991.
Hsu, R. Y. (1982) Pigeon liver malic enzyme. Mol. Cell Biochem. 43, 3-26.
Hsu, R. Y., and Lardy, H. A. (1967) Pigeon liver malic enzyme. II. Isolation, crystallization, and some properties. J. Biol. Chem. 242, 520-526.
Hsu, R. Y., and Pry, T. (1980) Kinetic studies of the malic enzyme of pigeon liver. 浵alf of the site?behavior of the enzyme tetramer in catalysis and substrate inhibition. Biochemistry 19, 962-968.
Hsu, R. Y., Mildvan, A. S., Chang, G. G., and Fung, C. H. (1976) Mechanism of pigeon liver malic enzyme: magnetic resonance and kinetic studies of the role of Mn2+. J. Biol. Chem. 251, 6574-6583.
Hsu, R.Y., Lardy, H. A., and Cleland, W. W. (1967) Pigeon liver malic enzyme. V. Kinetic studies. J. Biol . Chem. 242, 5315-5322.
Huang, T. M., and Chang, G. G. (1992) Characterization of the tetramer-dimer-monomer equilibrium of the enzymatically active subunits of pigeon liver malic enzyme. Biochemistry 31, 12658-12664.
Hung, H. C., and Chang, G. G. (2001) Differentiation of the slow-binding mechanism for magnesium ion activation and zinc ion inhibition of human placental alkaline phosphatase. Protein Sci. 10, 34-45.
Hung, H. C., Chang, G. G., Yang, Z., and Tong, L. (2000) Slow binding of metal ions to pigeon liver malic enzyme: a general case. Biochemistry 39, 14095-14102.
Iritani, N. (1992) Nutritional and hormonal regulation of lipogenic-enzyme gene expression in rat liver. Eur. J. Biochem. 205, 433-42.
Jaenicke, R., and Seckler, R. (1997) Protein misassembly in vitro. Adv. Protein Chem. 50, 1-59.
Kam, P. L., Lin, C. C., and Chang, G. G. (1987) Structural identity of the subunits of pigeon liver malic enzyme. Int. J. Pept. Protein Res. 30, 217-221.
Karsten, W. E., Chooback, L., Liu. D., Hwang, C. C., Lynch, C., and Cook, P. F. (1999) Mapping the active site topography of the NAD-malic enzyme via alanine-scanning site-directed mutagenesis. Biochemistry 38, 10527-10532.
Kelly, S. M., and Price N. C. (1997) The application of circular dichroism to studies of protein folding and unfolding. Biochim. Biophys. Acta 1338, 161-185.
Kiick, D. M., Harris, B. G., and Cook, P. F. (1986) Protonation mechanism and location of rate-determining steps for the Ascaris suum nicotinamide adenine dinucleotide-malic enzyme reaction from isotope effects and pH studies. Biochemistry 25, 227-236.
Kraulis, P. (1991) MOLSCRIPT: a program to produce both detail and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946-950.
Kunkel, T. A., Roberts, J. D., and Zakour, R. A. (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. Meth. Enzymol. 154, 367-382.
Kuo, C. C., Tsai, L. C., Chin, T. Y., Chang, G. G., and Chou, W. Y. (2000) Lysine residues 162 and 340 are involved in the catalysis and coenzyme binding of NADP(+)-dependent malic enzyme from pigeon. Biochem. Biophys. Res. Commun. 270, 821-825.
Kuo, J. W. (2001) The conformational change of human mitochondrial NAD(P)+-dependent malic enzyme after binding with lutetium ion. Master thesis, National Defence Medical Center.
Lakowicz, J. R. (1999) Principles of Fluorescence Spectroscopy, 2nd. Ed., pp. 237-266, Kluwer/Plenum, New York.
Lee, H. J., and Chang, G. G. (1990) Quaternary structure of pigeon liver malic enzyme. FEBS Lett. 277, 175-179.
Lee, H. J., Chen, Y. H., and Chang, G. G. (1988) Fluorescence studies of the dissociation and denaturation of pigeon liver malic enzyme. Biochim. Biophys. Acta 955, 119-127.
Loeber, G., Maurer-Fogy, I., and Schwendenwein, R. (1994) Purification, cDNA cloning and heterologous expression of the human mitochondrial NADP(+)-dependent malic enzyme. Biochem. J. 304, 687-692.
Lu, Y., and Valentine, J. S. (1997) Engineering metal-binding sites in proteins. Curr. Opin. Struct. Biol. 7, 495-500.
Martinek, K., Klyachko, N. L., Kabanov, A. V., Khmelnitsky, Yu. L., and Levashov, A. V. (1989) Micellar enzymology: its relation to membranology. Biochim. Biophys. Acta 981, 161-172.
Matulis, D., and Lovrien, R. (1998) 1-Anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation. Biophys. J. 74, 422-429.
McKeehan, W. L. (1982) Glycolysis, glutaminolysis and cell proliferation. Cell Biol. Internat. Reports. 6, 635-50.
McRorie, D. K., and Voelker, P. J. (1993) Self-associating systems in the analytical ultracentrifuge. Beckman Instruments, Inc., California.
Merritt, E. A., and Bacon, D. J. (1997) Raster 3D photorealistic molecular graphics. Meth. Enzymol. 277, 505-524.
Moreadith, R. W., and Lehninger, A. L. (1984) The pathways of glutamate and glutamin oxidation by tumour cell mitochondria:role of mitochondrial NAD(P)+-dependent malic enzyme. J. Biol. Chem. 259, 6215-6221.
Moulder, J. W., Vennesland, B., and Evans, E. A., Jr., (1945) A study of enzymic reactions catalyzed by pigeon liver ertracts. J. Biol. Chem. 160, 305-325.
Mrabet, N. T., Van den Broeck, A., Van den brande, I., Stanssens, P., Laroche, Y., Lambeir, A. M., Matthijssens, G., Jenkins, J., Chiadmi, M., and van Tilbeurgh, H. (1992) Arginine residues as stabilizing elements in proteins. Biochemistry 31, 2239-53.
Mrabet, N.T., Van den Broeck, A., Van den Brande, I., Stanssens, P., Laroche, Y., Lambeir, A. M., Matthyssens, G., Jenkins,J., Chiadmi, M., and van Tilbeurgh, H. (1992) Biochemistry 31, 2239-2253.
Nevaldine, B. H., Bassel, A. R., and Hsu, R. Y. (1974) Mechanism of pigeon liver malic enzyme subunit structure. Biochim. Biophys. Acta 336, 283-293.
Ochoa, S., Mehler, A., and Kornberg, A. (1947) Reversible oxidative decarboxylation of malic enzyme. J. Biol. Chem. 167, 871-872.
Ochoa, S., Mehler, A., Blanchard, M. L., Jukes, T. H., Hoffman, C. E., and Regan, M. (1947) Biotin and carbon dioxide fixation in liver. J. Biol. Chem. 170, 413-414.
O弶eary, M. H. (1992) in The Enzymes (Stigman, D. S., Ed), Third Ed., Vol. 20, pp. 236-269, Academic Press, New York.
Pace, C. N. (1986) Determination and analysis of urea and guanidine hydrochloride denaturation curves. Meth. Enzymol. 131, 266-280.
Pace, C. N. (1990) Measuring and increasing protein stability. Trends Biotechnol. 8, 93-98.
Park, S. H., Kiick, D. M., Harris, B. G., and Cook, P. F. (1984) Kinetic mechanism in the direction of oxidative decarboxylation for NAD-malic enzyme from Ascaris suum. Biochemistry 23, 5446-53.
Pry, T. A., and Hsu, R. Y. (1978) Mechanism of pigeon liver malic enzyme. Reactivity of class II sulfhydryl groups as a conformational probe for the 浵alf of the sites?reactivity of the enzyme with bromopyruvate. Biochemistry 17, 4024-4029.
Pry, T. A., and Hsu, R. Y. (1980) Equilibrium substrate binding studies of the malic enzyme of the pigeon liver. Equivalence of nucleotide sites and anticooperativity associated with the binding of the L-malate to the enzyme manganese(II) reduced nicotinamide adenine dinucleotide phosphate ternary complex. Biochemistry 19, 951-961.
Rao, N. M., and Nagaraj, R. (1991) Anomalous stimulation of Escherichia coli alkaline phosphatase activity in guanidinium chloride. J. Biol. Chem. 266, 5018-5024.
Reitzer, L. J., Wice, B. M., and Kennell, D. (1979) Evidence that glutamate, not sugar, is the major energy source for cultured HeLa cells. J. Biol. Chem. 254,2669-2676.
Rost, B. (1996) PHD: predicting one-dimensional protein structure by profile-base neural networks. Meth. Enzymol. 266, 525-539.
Royer, C. A., Mann, C. J., and Matthews, C. R. (1993) Resolution of the fluorescence equilibrium unfolding profile of trp aporepressor using single tryptophan mutants. Protein Sci. 2, 1844-52.
Rudyak, S. G., Brenowitz, M., and Shrader, T. E. (2001) Mg2+-linked oligomerization modulates the catalytic activity of the Lon (La) protease from Mycobacterium smegmatis. Biochemistry 40, 9317-9323.
Rutter, W. J., and Lardy, H. A. (1958) Purification and properties of pigeon liver malic enzyme. J. Biol. Chem. 233, 374-382.
Schez del Pino, M. M., and Fersht, A. R. (1997) Nonsequential unfolding of the a/b barrel protein indole-3-glycerol-phosphate synthase Biochemistry 36, 5560-5565.
Sander, C., and Schneider, R. (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9, 56-68.
Sanger, F., Nicklen, D., and Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463-5467.
Sauer, L. A. (1973) An NAD and NADP-dependent malic enzyme with regulatory properties. Biochem. Biophys. Res. Commun. 50, 524-531.
Schimerlik, M. I., and Cleland, W. W. (1977) pH variation of the kinetic parameters and the catalytic mechanism of malic enzyme. Biochemistry 16, 576-583.
Schuck, P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifigation and lamm Equation modeling. Biophys. J. 78, 1606-1619.
Stryer, L. (1995) Biochemistry, 4th ed, Freeman, New York.
Stumpf, D. A., Parks, J. K., Eguren, L. A., and Haasr, R. (1982) Friedreich ataxia: III. Mitochondrial malic enzyme deficiency. Neurology 32, 221-226.
Sundqvist, K. E., Heikkila, J., Hassinen, I. E., and Hiltunen, J. K. (1987) Role of NAD+-linked malic enzyme regulatirs of the pool size of tricarboxylic acid cycle intermediates in the perfused rat liver. Biochem. J. 243, 853-857.
Teller, J. K., Fahien, L. A., and Davis, J. W. (1992) Kinetic and regulation of hepatoma mitochondrial NAD(P) malic enzyme. J. Biol. Chem. 267, 10423-10432.
Voegele, R.T., Mitsch, M. J., and Finan, T. M. (1999) Characterization of two members of a novel malic enzyme class. Biochim. Biophys. Acta 1432, 275-285.
Weiss, P. M., Gavva, S. R., Harris, B. G., Urbauer, J. L., Cleland, W. W., and Cook, P. F. (1991) Multiple isotope effects with alternative dinucleotide substrates as a probe of the malic enzyme reaction. Biochemistry 30, 5755-5763.
Xu,Y., Bhargava, G., Wu, H., Loeber, G., and Tong, L. (1999) Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme: a new class of oxidative decarboxylases. Structure 7, 877-889.
Yang, Z. Floyd, D. L., Loeber, G., and Tong, L. (2000) Structure of a closed form of human malic enzyme and implications for catalytic mechanism. Nat. Struct. Biol. 7, 251-257.
Yang, Z., Batra, R., Floyd, D. L., Hung, H. C., Chang, G. G., and Tong, L. (2000) Potent and competitive inhibition of malic enzymes by lanthanide ions. Biochem. Biophys. Res. Commun. 274, 440-444.
Yang, Z., Zhang, H., Hung, H. C., Kuo, C. C., Tsai, L. C., Yuan, H. S., Chou, W. Y., Chang, G. G., and Tong, L. (2002) Structural studies of the pigeon cytosolic NADP+-dependent malic enzyme. Protein Sci. 11, 332-41.
Zhang, J. H., and Jr. Kurtz, D. M. (1992) Metal substitutions at the diiron sites of hemerythrin and myohemerythrin: Contributions of divalent metals to stability of a four-helix bundle protein. Pronc. Natl. Acad. Sci. USA 89, 7065-7069.
Zheng, L., Hogue, C. W.V., and Brennan, J. D. (1998) Effects of metal binding affinity on the chemical and thermal stability of site-directed mutants of rat oncomodulin. Biophys. Chem. 71, 157-172.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 25.梁連文、黃泉興、張順教,信用合作社未經營方向之探討,台灣金融研訓院,2001年6月。
2. 24.黃敏助,銀行經營績效評鑑之研究,基層金融研究訓練中心,1986年8月30日。
3. 15.黃永仁、施富士,信用合作社未來發展方向-改制與單獨立法問題,基層金融研究訓練中心,1986年7月31日。
4. 14.張宏明,信用合作社單獨立法之研究,基層金融研究訓練中心,1980年6月30日。
5. 9.林秋發,信用合作社成本效益之研究,基層金融研究訓練中心,1991年3月15日。
6. 8.黃永仁,台灣的基層金融-過去現在未來,基層金融研究訓練中心,1985年11月10日。
7. 27.張順教,台灣信合社組織發展與轉型之探討,信用合作季刊(第七十期),2001年10月。
8. 28.張春雄,基層金融改制問題之探討,存款保險資訊季刊(第九卷第三期),1996年3月。
9. 29.張春雄、張文添,銀行購併信用合作社相關實務問題,存款保險資訊季刊(第十一卷第三期),1998年3月。
10. 32.張慶堂,淺說信用合作社的變局與因應,基層金融(第30期),1999年3月。
11. 33.陳博志,金融機構合併的利益和限制,政策月刊(第52期),1999年11月。
12. 34.黃泉興,中型信用合作社改制為區域性商業銀行利弊及規劃方向之研究,  基層金融(第34期),1997年3月。
13. 36.黃博怡、藍秀璋,信用合作社之「併」與「購」-論合併之意義及相關概念,合作經濟(第60期),1999年3月。
14. 38.藍秀璋,信用合作社合併之法理分析(上),企銀季刊(第廿一卷第四期),1998年4月。
15. 39.藍秀璋,信用合作社合併之法理分析(下),企銀季刊(第廿二卷第一期),1998年7月。