|
1. Aggarwal BB, Puri R: Human cytokines : their role in disease and therapy. Boston: Blackwell Scientific Publications; 1994. 2. Mizel SB: The interleukins. Faseb J 1989, 3:2379-2388. 3. Schrader JW: The panspecific hemopoietin of activated T lymphocytes (interleukin-3). Annu Rev Immunol 1986, 4:205-230. 4. Ihle JN, Keller J, Oroszlan S, Henderson LE, Copeland TD, Fitch F, Prystowsky MB, Goldwasser E, Schrader JW, Palaszynski E, et al.: Biologic properties of homogeneous interleukin 3. I. Demonstration of WEHI-3 growth factor activity, mast cell growth factor activity, p cell-stimulating factor activity, colony-stimulating factor activity, and histamine-producing cell-stimulating factor activity. J Immunol 1983, 131:282-287. 5. Mire-Sluis AR, Thorpe R: Cytokines. San Diego: Academic Press; 1998. 6. Mui AL, Wakao H, Kinoshita T, Kitamura T, Miyajima A: Suppression of interleukin-3-induced gene expression by a C-terminal truncated Stat5: role of Stat5 in proliferation. Embo J 1996, 15:2425-2433. 7. Wang D, Stravopodis D, Teglund S, Kitazawa J, Ihle JN: Naturally occurring dominant negative variants of Stat5. Mol Cell Biol 1996, 16:6141-6148. 8. Yoshimura A, Ichihara M, Kinjyo I, Moriyama M, Copeland NG, Gilbert DJ, Jenkins NA, Hara T, Miyajima A: Mouse oncostatin M: an immediate early gene induced by multiple cytokines through the JAK-STAT5 pathway. Embo J 1996, 15:1055-1063. 9. Okuda K, Sanghera JS, Pelech SL, Kanakura Y, Hallek M, Griffin JD, Druker BJ: Granulocyte-macrophage colony-stimulating factor, interleukin-3, and steel factor induce rapid tyrosine phosphorylation of p42 and p44 MAP kinase. Blood 1992, 79:2880-2887. 10. Satoh T, Nakafuku M, Miyajima A, Kaziro Y: Involvement of ras p21 protein in signal-transduction pathways from interleukin 2, interleukin 3, and granulocyte/macrophage colony-stimulating factor, but not from interleukin 4. Proc Natl Acad Sci U S A 1991, 88:3314-3318. 11. Carroll MP, Clark-Lewis I, Rapp UR, May WS: Interleukin-3 and granulocyte-macrophage colony-stimulating factor mediate rapid phosphorylation and activation of cytosolic c-raf. J Biol Chem 1990, 265:19812-19817. 12. Kanakura Y, Druker B, Wood KW, Mamon HJ, Okuda K, Roberts TM, Griffin JD: Granulocyte-macrophage colony-stimulating factor and interleukin-3 induce rapid phosphorylation and activation of the proto-oncogene Raf-1 in a human factor-dependent myeloid cell line. Blood 1991, 77:243-248. 13. Okuda K, Ernst TJ, Griffin JD: Inhibition of p21ras activation blocks proliferation but not differentiation of interleukin-3-dependent myeloid cells. J Biol Chem 1994, 269:24602-24607. 14. Nagata Y, Moriguchi T, Nishida E, Todokoro K: Activation of p38 MAP kinase pathway by erythropoietin and interleukin-3. Blood 1997, 90:929-934. 15. Terada K, Kaziro Y, Satoh T: Ras-dependent activation of c-Jun N-terminal kinase/stress-activated protein kinase in response to interleukin-3 stimulation in hematopoietic BaF3 cells. J Biol Chem 1997, 272:4544-4548. 16. Nagata Y, Nishida E, Todokoro K: Activation of JNK signaling pathway by erythropoietin, thrombopoietin, and interleukin-3. Blood 1997, 89:2664-2669. 17. Smith A, Ramos-Morales F, Ashworth A, Collins M: A role for JNK/SAPK in proliferation, but not apoptosis, of IL-3-dependent cells. Curr Biol 1997, 7:893-896. 18. Gold MR, Duronio V, Saxena SP, Schrader JW, Aebersold R: Multiple cytokines activate phosphatidylinositol 3-kinase in hemopoietic cells. Association of the enzyme with various tyrosine-phosphorylated proteins. J Biol Chem 1994, 269:5403-5412. 19. Songyang Z, Baltimore D, Cantley LC, Kaplan DR, Franke TF: Interleukin 3-dependent survival by the Akt protein kinase. Proc Natl Acad Sci U S A 1997, 94:11345-11350. 20. Calvo V, Wood M, Gjertson C, Vik T, Bierer BE: Activation of 70-kDa S6 kinase, induced by the cytokines interleukin-3 and erythropoietin and inhibited by rapamycin, is not an absolute requirement for cell proliferation. Eur J Immunol 1994, 24:2664-2671. 21. Brandt JE, Bhalla K, Hoffman R: Effects of interleukin-3 and c-kit ligand on the survival of various classes of human hematopoietic progenitor cells. Blood 1994, 83:1507-1514. 22. Kinoshita T, Yokota T, Arai K, Miyajima A: Suppression of apoptotic death in hematopoietic cells by signalling through the IL-3/GM-CSF receptors. Embo J 1995, 14:266-275. 23. Nicola NA, Robb L, Metcalf D, Cary D, Drinkwater CC, Begley CG: Functional inactivation in mice of the gene for the interleukin-3 (IL-3)-specific receptor beta-chain: implications for IL-3 function and the mechanism of receptor transmodulation in hematopoietic cells. Blood 1996, 87:2665-2674. 24. Terada K, Kaziro Y, Satoh T: Ras is not required for the interleukin 3-induced proliferation of a mouse pro-B cell line, BaF3. J Biol Chem 1995, 270:27880-27886. 25. Cleveland JL, Troppmair J, Packham G, Askew DS, Lloyd P, Gonzalez-Garcia M, Nunez G, Ihle JN, Rapp UR: v-raf suppresses apoptosis and promotes growth of interleukin-3-dependent myeloid cells. Oncogene 1994, 9:2217-2226. 26. Kinoshita T, Shirouzu M, Kamiya A, Hashimoto K, Yokoyama S, Miyajima A: Raf/MAPK and rapamycin-sensitive pathways mediate the anti-apoptotic function of p21Ras in IL-3-dependent hematopoietic cells. Oncogene 1997, 15:619-627. 27. Perkins GR, Marshall CJ, Collins MK: The role of MAP kinase kinase in interleukin-3 stimulation of proliferation. Blood 1996, 87:3669-3675. 28. Garland JM, Rudin C: Cytochrome c induces caspase-dependent apoptosis in intact hematopoietic cells and overrides apoptosis suppression mediated by bcl-2, growth factor signaling, MAP-kinase-kinase, and malignant change. Blood 1998, 92:1235-1246. 29. Poommipanit PB, Chen B, Oltvai ZN: Interleukin-3 induces the phosphorylation of a distinct fraction of bcl-2. J Biol Chem 1999, 274:1033-1039. 30. Dumon S, Santos SC, Debierre-Grockiego F, Gouilleux-Gruart V, Cocault L, Boucheron C, Mollat P, Gisselbrecht S, Gouilleux F: IL-3 dependent regulation of Bcl-xL gene expression by STAT5 in a bone marrow derived cell line. Oncogene 1999, 18:4191-4199. 31. Gesbert F, Griffin JD: Bcr/Abl activates transcription of the Bcl-X gene through STAT5. Blood 2000, 96:2269-2276. 32. Wang JM, Chao JR, Chen W, Kuo ML, Yen JJ, Yang-Yen HF: The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol 1999, 19:6195-6206. 33. Leverrier Y, Thomas J, Perkins GR, Mangeney M, Collins MK, Marvel J: In bone marrow derived Baf-3 cells, inhibition of apoptosis by IL-3 is mediated by two independent pathways. Oncogene 1997, 14:425-430. 34. Rinaudo MS, Su K, Falk LA, Halder S, Mufson RA: Human interleukin-3 receptor modulates bcl-2 mRNA and protein levels through protein kinase C in TF-1 cells. Blood 1995, 86:80-88. 35. Kinoshita T, Yokota T, Arai K, Miyajima A: Regulation of Bcl-2 expression by oncogenic Ras protein in hematopoietic cells. Oncogene 1995, 10:2207-2212. 36. Lin EY, Orlofsky A, Wang HG, Reed JC, Prystowsky MB: A1, a Bcl-2 family member, prolongs cell survival and permits myeloid differentiation. Blood 1996, 87:983-992. 37. Baffy G, Miyashita T, Williamson JR, Reed JC: Apoptosis induced by withdrawal of interleukin-3 (IL-3) from an IL-3-dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced Bcl-2 oncoprotein production. J Biol Chem 1993, 268:6511-6519. 38. Ito T, Deng X, Carr B, May WS: Bcl-2 phosphorylation required for anti-apoptosis function. J Biol Chem 1997, 272:11671-11673. 39. Gotoh N, Tojo A, Shibuya M: A novel pathway from phosphorylation of tyrosine residues 239/240 of Shc, contributing to suppress apoptosis by IL-3. Embo J 1996, 15:6197-6204. 40. Suzuki J, Kaziro Y, Koide H: An activated mutant of R-Ras inhibits cell death caused by cytokine deprivation in BaF3 cells in the presence of IGF-I. Oncogene 1997, 15:1689-1697. 41. Marte BM, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J: R-Ras can activate the phosphoinositide 3-kinase but not the MAP kinase arm of the Ras effector pathways. Curr Biol 1997, 7:63-70. 42. Scheid MP, Lauener RW, Duronio V: Role of phosphatidylinositol 3-OH-kinase activity in the inhibition of apoptosis in haemopoietic cells: phosphatidylinositol 3-OH-kinase inhibitors reveal a difference in signalling between interleukin-3 and granulocyte-macrophage colony stimulating factor. Biochem J 1995, 312 ( Pt 1):159-162. 43. Marte BM, Downward J: PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci 1997, 22:355-358. 44. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME: Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997, 91:231-241. 45. Kerr JF, Wyllie AH, Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972, 26:239-257. 46. Sulston JE, Horvitz HR: Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 1977, 56:110-156. 47. Ellis RE, Yuan JY, Horvitz HR: Mechanisms and functions of cell death. Annu Rev Cell Biol 1991, 7:663-698. 48. Hengartner MO, Horvitz HR: Programmed cell death in Caenorhabditis elegans. Curr Opin Genet Dev 1994, 4:581-586. 49. Hengartner MO: Genetic control of programmed cell death and aging in the nematode Caenorhabditis elegans. Exp Gerontol 1997, 32:363-374. 50. Liu QA, Hengartner MO: The molecular mechanism of programmed cell death in C. elegans. Ann N Y Acad Sci 1999, 887:92-104. 51. Meier P, Finch A, Evan G: Apoptosis in development. Nature 2000, 407:796-801. 52. Chinnaiyan AM, O'Rourke K, Lane BR, Dixit VM: Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 1997, 275:1122-1126. 53. Chinnaiyan AM, Chaudhary D, O'Rourke K, Koonin EV, Dixit VM: Role of CED-4 in the activation of CED-3. Nature 1997, 388:728-729. 54. Spector MS, Desnoyers S, Hoeppner DJ, Hengartner MO: Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 1997, 385:653-656. 55. Wu D, Wallen HD, Nunez G: Interaction and regulation of subcellular localization of CED-4 by CED-9. Science 1997, 275:1126-1129. 56. Pan G, O'Rourke K, Dixit VM: Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J Biol Chem 1998, 273:5841-5845. 57. Hu Y, Benedict MA, Wu D, Inohara N, Nunez G: Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc Natl Acad Sci U S A 1998, 95:4386-4391. 58. Conradt B, Horvitz HR: The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 1998, 93:519-529. 59. Ellis RE, Horvitz HR: Two C. elegans genes control the programmed deaths of specific cells in the pharynx. Development 1991, 112:591-603. 60. Metzstein MM, Hengartner MO, Tsung N, Ellis RE, Horvitz HR: Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2. Nature 1996, 382:545-547. 61. Inukai T, Inoue A, Kurosawa H, Goi K, Shinjyo T, Ozawa K, Mao M, Inaba T, Look AT: SLUG, a ces-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A-HLF oncoprotein. Mol Cell 1999, 4:343-352. 62. Hemavathy K, Guru SC, Harris J, Chen JD, Ip YT: Human Slug is a repressor that localizes to sites of active transcription. Mol Cell Biol 2000, 20:5087-5095. 63. Inaba T, Inukai T, Yoshihara T, Seyschab H, Ashmun RA, Canman CE, Laken SJ, Kastan MB, Look AT: Reversal of apoptosis by the leukaemia-associated E2A-HLF chimaeric transcription factor. Nature 1996, 382:541-544. 64. Metzstein MM, Horvitz HR: The C. elegans cell death specification gene ces-1 encodes a snail family zinc finger protein. Mol Cell 1999, 4:309-319. 65. Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA, Ulrich E, Waymire KG, Mahar P, Frauwirth K, et al.: The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 2000, 6:1389-1399. 66. Montminy MR, Bilezikjian LM: Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 1987, 328:175-178. 67. Yamamoto KK, Gonzalez GA, Biggs WH, 3rd, Montminy MR: Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature 1988, 334:494-498. 68. Klemm DJ, Roesler WJ, Boras T, Colton LA, Felder K, Reusch JE: Insulin stimulates cAMP-response element binding protein activity in HepG2 and 3T3-L1 cell lines. J Biol Chem 1998, 273:917-923. 69. Walker WH, Fucci L, Habener JF: Expression of the gene encoding transcription factor cyclic adenosine 3',5'-monophosphate (cAMP) response element-binding protein (CREB): regulation by follicle-stimulating hormone-induced cAMP signaling in primary rat Sertoli cells. Endocrinology 1995, 136:3534-3545. 70. Ghosh A, Greenberg ME: Distinct roles for bFGF and NT-3 in the regulation of cortical neurogenesis. Neuron 1995, 15:89-103. 71. Ginty DD, Bonni A, Greenberg ME: Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell 1994, 77:713-725. 72. Tan Y, Rouse J, Zhang A, Cariati S, Cohen P, Comb MJ: FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. Embo J 1996, 15:4629-4642. 73. Pende M, Fisher TL, Simpson PB, Russell JT, Blenis J, Gallo V: Neurotransmitter- and growth factor-induced cAMP response element binding protein phosphorylation in glial cell progenitors: role of calcium ions, protein kinase C, and mitogen-activated protein kinase/ribosomal S6 kinase pathway. J Neurosci 1997, 17:1291-1301. 74. Sheng M, Thompson MA, Greenberg ME: CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 1991, 252:1427-1430. 75. Shaywitz AJ, Greenberg ME: CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 1999, 68:821-861. 76. Gonzalez GA, Montminy MR: Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 1989, 59:675-680. 77. Beitner-Johnson D, Millhorn DE: Hypoxia induces phosphorylation of the cyclic AMP response element-binding protein by a novel signaling mechanism. J Biol Chem 1998, 273:19834-19839. 78. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME: Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 1999, 286:1358-1362. 79. Du K, Montminy M: CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 1998, 273:32377-32379. 80. Brindle P, Linke S, Montminy M: Protein-kinase-A-dependent activator in transcription factor CREB reveals new role for CREM repressors. Nature 1993, 364:821-824. 81. Gonzalez GA, Menzel P, Leonard J, Fischer WH, Montminy MR: Characterization of motifs which are critical for activity of the cyclic AMP-responsive transcription factor CREB. Mol Cell Biol 1991, 11:1306-1312. 82. Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH: Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 1993, 365:855-859. 83. Kwok RP, Lundblad JR, Chrivia JC, Richards JP, Bachinger HP, Brennan RG, Roberts SG, Green MR, Goodman RH: Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 1994, 370:223-226. 84. Yano S, Tokumitsu H, Soderling TR: Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature 1998, 396:584-587. 85. Riccio A, Ahn S, Davenport CM, Blendy JA, Ginty DD: Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 1999, 286:2358-2361. 86. Yang YM, Dolan LR, Ronai Z: Expression of dominant negative CREB reduces resistance to radiation of human melanoma cells. Oncogene 1996, 12:2223-2233. 87. Jean D, Harbison M, McConkey DJ, Ronai Z, Bar-Eli M: CREB and its associated proteins act as survival factors for human melanoma cells. J Biol Chem 1998, 273:24884-24890. 88. Barton K, Muthusamy N, Chanyangam M, Fischer C, Clendenin C, Leiden JM: Defective thymocyte proliferation and IL-2 production in transgenic mice expressing a dominant-negative form of CREB. Nature 1996, 379:81-85. 89. Bussfeld D, Bacher M, Moritz A, Gemsa D, Sprenger H: Expression of transcription factor genes after influenza A virus infection. Immunobiology 1997, 198:291-298. 90. Blendy JA, Kaestner KH, Weinbauer GF, Nieschlag E, Schutz G: Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature 1996, 380:162-165. 91. Nantel F, Monaco L, Foulkes NS, Masquilier D, LeMeur M, Henriksen K, Dierich A, Parvinen M, Sassone-Corsi P: Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature 1996, 380:159-162. 92. Rudolph D, Tafuri A, Gass P, Hammerling GJ, Arnold B, Schutz G: Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc Natl Acad Sci U S A 1998, 95:4481-4486. 93. Bleckmann SC, Blendy JA, Rudolph D, Monaghan AP, Schmid W, Schutz G: Activating transcription factor 1 and CREB are important for cell survival during early mouse development. Mol Cell Biol 2002, 22:1919-1925. 94. Lee HJ, Mignacca RC, Sakamoto KM: Transcriptional activation of egr-1 by granulocyte-macrophage colony-stimulating factor but not interleukin 3 requires phosphorylation of cAMP response element-binding protein (CREB) on serine 133. J Biol Chem 1995, 270:15979-15983. 95. Wilson BE, Mochon E, Boxer LM: Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol 1996, 16:5546-5556. 96. Merry DE, Korsmeyer SJ: Bcl-2 gene family in the nervous system. Annu Rev Neurosci 1997, 20:245-267. 97. Ikushima S, Inukai T, Inaba T, Nimer SD, Cleveland JL, Look AT: Pivotal role for the NFIL3/E4BP4 transcription factor in interleukin 3-mediated survival of pro-B lymphocytes. Proc Natl Acad Sci U S A 1997, 94:2609-2614. 98. Inaba T, Roberts WM, Shapiro LH, Jolly KW, Raimondi SC, Smith SD, Look AT: Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia. Science 1992, 257:531-534. 99. Hunger SP, Ohyashiki K, Toyama K, Cleary ML: Hlf, a novel hepatic bZIP protein, shows altered DNA-binding properties following fusion to E2A in t(17;19) acute lymphoblastic leukemia. Genes Dev 1992, 6:1608-1620. 100. Hunger SP, Brown R, Cleary ML: DNA-binding and transcriptional regulatory properties of hepatic leukemia factor (HLF) and the t(17;19) acute lymphoblastic leukemia chimera E2A-HLF. Mol Cell Biol 1994, 14:5986-5996. 101. Inaba T, Shapiro LH, Funabiki T, Sinclair AE, Jones BG, Ashmun RA, Look AT: DNA-binding specificity and trans-activating potential of the leukemia-associated E2A-hepatic leukemia factor fusion protein. Mol Cell Biol 1994, 14:3403-3413. 102. Inukai T, Inaba T, Yoshihara T, Look AT: Cell transformation mediated by homodimeric E2A-HLF transcription factors. Mol Cell Biol 1997, 17:1417-1424. 103. Inukai T, Inaba T, Ikushima S, Look AT: The AD1 and AD2 transactivation domains of E2A are essential for the antiapoptotic activity of the chimeric oncoprotein E2A-HLF. Mol Cell Biol 1998, 18:6035-6043. 104. Cowell IG, Skinner A, Hurst HC: Transcriptional repression by a novel member of the bZIP family of transcription factors. Mol Cell Biol 1992, 12:3070-3077. 105. Zhang W, Zhang J, Kornuc M, Kwan K, Frank R, Nimer SD: Molecular cloning and characterization of NF-IL3A, a transcriptional activator of the human interleukin-3 promoter. Mol Cell Biol 1995, 15:6055-6063. 106. Chen WJ, Lewis KS, Chandra G, Cogswell JP, Stinnett SW, Kadwell SH, Gray JG: Characterization of human E4BP4, a phosphorylated bZIP factor. Biochim Biophys Acta 1995, 1264:388-396. 107. Lai CK, Ting LP: Transcriptional repression of human hepatitis B virus genes by a bZIP family member, E4BP4. J Virol 1999, 73:3197-3209. 108. Ishida H, Ueda K, Ohkawa K, Kanazawa Y, Hosui A, Nakanishi F, Mita E, Kasahara A, Sasaki Y, Hori M, et al.: Identification of multiple transcription factors, HLF, FTF, and E4BP4, controlling hepatitis B virus enhancer II. J Virol 2000, 74:1241-1251. 109. Doi M, Nakajima Y, Okano T, Fukada Y: Light-induced phase-delay of the chicken pineal circadian clock is associated with the induction of cE4bp4, a potential transcriptional repressor of cPer2 gene. Proc Natl Acad Sci U S A 2001, 98:8089-8094. 110. Cowell IG, Hurst HC: Transcriptional repression by the human bZIP factor E4BP4: definition of a minimal repression domain. Nucleic Acids Res 1994, 22:59-65. 111. Cowell IG, Hurst HC: Protein-protein interaction between the transcriptional repressor E4BP4 and the TBP-binding protein Dr1. Nucleic Acids Res 1996, 24:3607-3613. 112. Mueller CR, Maire P, Schibler U: DBP, a liver-enriched transcriptional activator, is expressed late in ontogeny and its tissue specificity is determined posttranscriptionally. Cell 1990, 61:279-291. 113. Drolet DW, Scully KM, Simmons DM, Wegner M, Chu KT, Swanson LW, Rosenfeld MG: TEF, a transcription factor expressed specifically in the anterior pituitary during embryogenesis, defines a new class of leucine zipper proteins. Genes Dev 1991, 5:1739-1753. 114. Kuribara R, Kinoshita T, Miyajima A, Shinjyo T, Yoshihara T, Inukai T, Ozawa K, Look AT, Inaba T: Two distinct interleukin-3-mediated signal pathways, Ras-NFIL3 (E4BP4) and Bcl-xL, regulate the survival of murine pro-B lymphocytes. Mol Cell Biol 1999, 19:2754-2762. 115. Chu CC, Paul WE: Expressed genes in interleukin-4 treated B cells identified by cDNA representational difference analysis. Mol Immunol 1998, 35:487-502. 116. Wallace AD, Wheeler TT, Young DA: Inducibility of E4BP4 suggests a novel mechanism of negative gene regulation by glucocorticoids. Biochem Biophys Res Commun 1997, 232:403-406. 117. Nishimura Y, Tanaka T: Calcium-dependent activation of nuclear factor regulated by interleukin 3/adenovirus E4 promoter-binding protein gene expression by calcineurin/nuclear factor of activated T cells and calcium/calmodulin-dependent protein kinase signaling. J Biol Chem 2001, 276:19921-19928. 118. Mitsui S, Yamaguchi S, Matsuo T, Ishida Y, Okamura H: Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev 2001, 15:995-1006. 119. Merika M, Orkin SH: DNA-binding specificity of GATA family transcription factors. Mol Cell Biol 1993, 13:3999-4010. 120. Evans T, Reitman M, Felsenfeld G: An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. Proc Natl Acad Sci U S A 1988, 85:5976-5980. 121. Evans T, Felsenfeld G: The erythroid-specific transcription factor Eryf1: a new finger protein. Cell 1989, 58:877-885. 122. Tsai SF, Martin DI, Zon LI, D'Andrea AD, Wong GG, Orkin SH: Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature 1989, 339:446-451. 123. Trainor CD, Omichinski JG, Vandergon TL, Gronenborn AM, Clore GM, Felsenfeld G: A palindromic regulatory site within vertebrate GATA-1 promoters requires both zinc fingers of the GATA-1 DNA-binding domain for high-affinity interaction. Mol Cell Biol 1996, 16:2238-2247. 124. Weiss MJ, Yu C, Orkin SH: Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line. Mol Cell Biol 1997, 17:1642-1651. 125. Weiss MJ, Orkin SH: GATA transcription factors: key regulators of hematopoiesis. Exp Hematol 1995, 23:99-107. 126. Shivdasani RA, Fujiwara Y, McDevitt MA, Orkin SH: A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. Embo J 1997, 16:3965-3973. 127. Orkin SH: GATA-binding transcription factors in hematopoietic cells. Blood 1992, 80:575-581. 128. Visvader J, Adams JM: Megakaryocytic differentiation induced in 416B myeloid cells by GATA-2 and GATA-3 transgenes or 5-azacytidine is tightly coupled to GATA-1 expression. Blood 1993, 82:1493-1501. 129. Kulessa H, Frampton J, Graf T: GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes Dev 1995, 9:1250-1262. 130. Takahashi S, Komeno T, Suwabe N, Yoh K, Nakajima O, Nishimura S, Kuroha T, Nagasawa T, Yamamoto M: Role of GATA-1 in proliferation and differentiation of definitive erythroid and megakaryocytic cells in vivo. Blood 1998, 92:434-442. 131. Weiss MJ, Orkin SH: Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis. Proc Natl Acad Sci U S A 1995, 92:9623-9627. 132. Whyatt DJ, Karis A, Harkes IC, Verkerk A, Gillemans N, Elefanty AG, Vairo G, Ploemacher R, Grosveld F, Philipsen S: The level of the tissue-specific factor GATA-1 affects the cell-cycle machinery. Genes Funct 1997, 1:11-24. 133. Whyatt D, Lindeboom F, Karis A, Ferreira R, Milot E, Hendriks R, de Bruijn M, Langeveld A, Gribnau J, Grosveld F, et al.: An intrinsic but cell-nonautonomous defect in GATA-1-overexpressing mouse erythroid cells. Nature 2000, 406:519-524. 134. Orlic D, Anderson S, Biesecker LG, Sorrentino BP, Bodine DM: Pluripotent hematopoietic stem cells contain high levels of mRNA for c-kit, GATA-2, p45 NF-E2, and c-myb and low levels or no mRNA for c-fms and the receptors for granulocyte colony-stimulating factor and interleukins 5 and 7. Proc Natl Acad Sci U S A 1995, 92:4601-4605. 135. Ikonomi P, Rivera CE, Riordan M, Washington G, Schechter AN, Noguchi CT: Overexpression of GATA-2 inhibits erythroid and promotes megakaryocyte differentiation. Exp Hematol 2000, 28:1423-1431. 136. Onodera K, Yomogida K, Suwabe N, Takahashi S, Muraosa Y, Hayashi N, Ito E, Gu L, Rassoulzadegan M, Engel JD, et al.: Conserved structure, regulatory elements, and transcriptional regulation from the GATA-1 gene testis promoter. J Biochem (Tokyo) 1997, 121:251-263. 137. Nishimura S, Takahashi S, Kuroha T, Suwabe N, Nagasawa T, Trainor C, Yamamoto M: A GATA box in the GATA-1 gene hematopoietic enhancer is a critical element in the network of GATA factors and sites that regulate this gene. Mol Cell Biol 2000, 20:713-723. 138. Tsang AP, Visvader JE, Turner CA, Fujiwara Y, Yu C, Weiss MJ, Crossley M, Orkin SH: FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 1997, 90:109-119. 139. Fox AH, Kowalski K, King GF, Mackay JP, Crossley M: Key residues characteristic of GATA N-fingers are recognized by FOG. J Biol Chem 1998, 273:33595-33603. 140. Rekhtman N, Radparvar F, Evans T, Skoultchi AI: Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev 1999, 13:1398-1411. 141. Fox AH, Liew C, Holmes M, Kowalski K, Mackay J, Crossley M: Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. Embo J 1999, 18:2812-2822. 142. Nerlov C, Querfurth E, Kulessa H, Graf T: GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood 2000, 95:2543-2551. 143. Zhang P, Zhang X, Iwama A, Yu C, Smith KA, Mueller BU, Narravula S, Torbett BE, Orkin SH, Tenen DG: PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood 2000, 96:2641-2648. 144. Merika M, Orkin SH: Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins Sp1 and EKLF. Mol Cell Biol 1995, 15:2437-2447. 145. Boyes J, Byfield P, Nakatani Y, Ogryzko V: Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 1998, 396:594-598. 146. Hung HL, Lau J, Kim AY, Weiss MJ, Blobel GA: CREB-Binding protein acetylates hematopoietic transcription factor GATA-1 at functionally important sites. Mol Cell Biol 1999, 19:3496-3505. 147. Crossley M, Orkin SH: Phosphorylation of the erythroid transcription factor GATA-1. J Biol Chem 1994, 269:16589-16596. 148. Taxman DJ, Sonsteby SK, Wojchowski DM: In vitro transcription of erythroid promoters using baculoviral-expressed human GATA-1: purification, physicochemistry, and activities. Protein Expr Purif 1994, 5:587-594. 149. Partington GA, Patient RK: Phosphorylation of GATA-1 increases its DNA-binding affinity and is correlated with induction of human K562 erythroleukaemia cells. Nucleic Acids Res 1999, 27:1168-1175. 150. De Maria R, Zeuner A, Eramo A, Domenichelli C, Bonci D, Grignani F, Srinivasula SM, Alnemri ES, Testa U, Peschle C: Negative regulation of erythropoiesis by caspase-mediated cleavage of GATA-1. Nature 1999, 401:489-493. 151. Gregory T, Yu C, Ma A, Orkin SH, Blobel GA, Weiss MJ: GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression. Blood 1999, 94:87-96. 152. Tanaka H, Matsumura I, Nakajima K, Daino H, Sonoyama J, Yoshida H, Oritani K, Machii T, Yamamoto M, Hirano T, et al.: GATA-1 blocks IL-6-induced macrophage differentiation and apoptosis through the sustained expression of cyclin D1 and bcl-2 in a murine myeloid cell line M1. Blood 2000, 95:1264-1273. 153. Blackwood EM, Kadonaga JT: Going the distance: a current view of enhancer action. Science 1998, 281:61-63. 154. Lee TI, Young RA: Transcription of eukaryotic protein-coding genes. Annu Rev Genet 2000, 34:77-137. 155. Lemon B, Tjian R: Orchestrated response: a symphony of transcription factors for gene control. Genes Dev 2000, 14:2551-2569. 156. Malik S, Roeder RG: Transcriptional regulation through Mediator-like coactivators in yeast and metazoan cells. Trends Biochem Sci 2000, 25:277-283. 157. Orphanides G, Lagrange T, Reinberg D: The general transcription factors of RNA polymerase II. Genes Dev 1996, 10:2657-2683. 158. Smale ST: Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. Biochim Biophys Acta 1997, 1351:73-88. 159. Lagrange T, Kapanidis AN, Tang H, Reinberg D, Ebright RH: New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev 1998, 12:34-44. 160. Smale ST, Baltimore D: The "initiator" as a transcription control element. Cell 1989, 57:103-113. 161. Burke TW, Kadonaga JT: Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes Dev 1996, 10:711-724. 162. Burke TW, Kadonaga JT: The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFII60 of Drosophila. Genes Dev 1997, 11:3020-3031. 163. Burke TW, Willy PJ, Kutach AK, Butler JE, Kadonaga JT: The DPE, a conserved downstream core promoter element that is functionally analogous to the TATA box. Cold Spring Harb Symp Quant Biol 1998, 63:75-82. 164. Kutach AK, Kadonaga JT: The downstream promoter element DPE appears to be as widely used as the TATA box in Drosophila core promoters. Mol Cell Biol 2000, 20:4754-4764. 165. Smale ST: Core promoters: active contributors to combinatorial gene regulation. Genes Dev 2001, 15:2503-2508. 166. Butler JE, Kadonaga JT: Enhancer-promoter specificity mediated by DPE or TATA core promoter motifs. Genes Dev 2001, 15:2515-2519. 167. Sehgal A, Patil N, Chao M: A constitutive promoter directs expression of the nerve growth factor receptor gene. Mol Cell Biol 1988, 8:3160-3167. 168. Dynan WS, Tjian R: The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 1983, 35:79-87. 169. Biggin MD, Tjian R: Transcription factors that activate the Ultrabithorax promoter in developmentally staged extracts. Cell 1988, 53:699-711. 170. Soeller WC, Poole SJ, Kornberg T: In vitro transcription of the Drosophila engrailed gene. Genes Dev 1988, 2:68-81. 171. Perkins KK, Dailey GM, Tjian R: In vitro analysis of the Antennapedia P2 promoter: identification of a new Drosophila transcription factor. Genes Dev 1988, 2:1615-1626. 172. Landau NR, St John TP, Weissman IL, Wolf SC, Silverstone AE, Baltimore D: Cloning of terminal transferase cDNA by antibody screening. Proc Natl Acad Sci U S A 1984, 81:5836-5840. 173. Anderson SJ, Chou HS, Loh DY: A conserved sequence in the T-cell receptor beta-chain promoter region. Proc Natl Acad Sci U S A 1988, 85:3551-3554. 174. Garvin AM, Pawar S, Marth JD, Perlmutter RM: Structure of the murine lck gene and its rearrangement in a murine lymphoma cell line. Mol Cell Biol 1988, 8:3058-3064. 175. Kudo A, Sakaguchi N, Melchers F: Organization of the murine Ig-related lambda 5 gene transcribed selectively in pre-B lymphocytes. Embo J 1987, 6:103-107. 176. Kudo A, Melchers F: A second gene, VpreB in the lambda 5 locus of the mouse, which appears to be selectively expressed in pre-B lymphocytes. Embo J 1987, 6:2267-2272. 177. Grosschedl R, Birnstiel ML: Identification of regulatory sequences in the prelude sequences of an H2A histone gene by the study of specific deletion mutants in vivo. Proc Natl Acad Sci U S A 1980, 77:1432-1436. 178. Breathnach R, Chambon P: Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem 1981, 50:349-383. 179. Smale ST, Schmidt MC, Berk AJ, Baltimore D: Transcriptional activation by Sp1 as directed through TATA or initiator: specific requirement for mammalian transcription factor IID. Proc Natl Acad Sci U S A 1990, 87:4509-4513. 180. Smale ST, Jain A, Kaufmann J, Emami KH, Lo K, Garraway IP: The initiator element: a paradigm for core promoter heterogeneity within metazoan protein-coding genes. Cold Spring Harb Symp Quant Biol 1998, 63:21-31. 181. Sulston JE, Schierenberg E, White JG, Thomson JN: The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983, 100:64-119. 182. Ellis HM, Horvitz HR: Genetic control of programmed cell death in the nematode C. elegans. Cell 1986, 44:817-829. 183. Hengartner MO, Ellis RE, Horvitz HR: Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 1992, 356:494-499. 184. Ellis RE, Jacobson DM, Horvitz HR: Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 1991, 129:79-94. 185. Hedgecock EM, Sulston JE, Thomson JN: Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 1983, 220:1277-1279. 186. Sulston JE: Post-embryonic development in the ventral cord of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 1976, 275:287-297. 187. Yoshihara T, Inaba T, Shapiro LH, Kato JY, Look AT: E2A-HLF-mediated cell transformation requires both the trans-activation domains of E2A and the leucine zipper dimerization domain of HLF. Mol Cell Biol 1995, 15:3247-3255. 188. Palacios R, Steinmetz M: Il-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell 1985, 41:727-734. 189. Lee SF, Huang HM, Chao JR, Lin S, Yang-Yen HF, Yen JJ: Cytokine receptor common beta chain as a potential activator of cytokine withdrawal-induced apoptosis. Mol Cell Biol 1999, 19:7399-7409. 190. Kitamura T, Tange T, Terasawa T, Chiba S, Kuwaki T, Miyagawa K, Piao YF, Miyazono K, Urabe A, Takaku F: Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J Cell Physiol 1989, 140:323-334. 191. Vinson CR, LaMarco KL, Johnson PF, Landschulz WH, McKnight SL: In situ detection of sequence-specific DNA binding activity specified by a recombinant bacteriophage. Genes Dev 1988, 2:801-806. 192. Dignam JD, Lebovitz RM, Roeder RG: Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 1983, 11:1475-1489. 193. Chodosh LA, Carthew RW, Sharp PA: A single polypeptide possesses the binding and transcription activities of the adenovirus major late transcription factor. Mol Cell Biol 1986, 6:4723-4733. 194. Hsueh YP, Liang HE, Ng SY, Lai MZ: CD28-costimulation activates cyclic AMP-responsive element-binding protein in T lymphocytes. J Immunol 1997, 158:85-93. 195. Zheng QA, Chang DC: High-efficiency gene transfection by in situ electroporation of cultured cells. Biochim Biophys Acta 1991, 1088:104-110. 196. Grumont RJ, Rourke IJ, Gerondakis S: Rel-dependent induction of A1 transcription is required to protect B cells from antigen receptor ligation-induced apoptosis. Genes Dev 1999, 13:400-411. 197. Herber B, Truss M, Beato M, Muller R: Inducible regulatory elements in the human cyclin D1 promoter. Oncogene 1994, 9:2105-2107. 198. Stegmann K, Boecker J, Kosan C, Ermert A, Kunz J, Koch MC: Human transcription factor SLUG: mutation analysis in patients with neural tube defects and identification of a missense mutation (D119E) in the Slug subfamily-defining region. Mutat Res 1999, 406:63-69. 199. Sakamoto KM, Fraser JK, Lee HJ, Lehman E, Gasson JC: Granulocyte-macrophage colony-stimulating factor and interleukin-3 signaling pathways converge on the CREB-binding site in the human egr-1 promoter. Mol Cell Biol 1994, 14:5975-5985. 200. Zhang F, Rincon M, Flavell RA, Aune TM: Defective Th function induced by a dominant-negative cAMP response element binding protein mutation is reversed by Bcl-2. J Immunol 2000, 165:1762-1770. 201. Chao JR, Wang JM, Lee SF, Peng HW, Lin YH, Chou CH, Li JC, Huang HM, Chou CK, Kuo ML, et al.: mcl-1 is an immediate-early gene activated by the granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling pathway and is one component of the GM-CSF viability response. Mol Cell Biol 1998, 18:4883-4898. 202. Martin DI, Orkin SH: Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf 1. Genes Dev 1990, 4:1886-1898. 203. Yamamoto M, Ko LJ, Leonard MW, Beug H, Orkin SH, Engel JD: Activity and tissue-specific expression of the transcription factor NF-E1 multigene family. Genes Dev 1990, 4:1650-1662. 204. Martin DI, Zon LI, Mutter G, Orkin SH: Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature 1990, 344:444-447. 205. Romeo PH, Prandini MH, Joulin V, Mignotte V, Prenant M, Vainchenker W, Marguerie G, Uzan G: Megakaryocytic and erythrocytic lineages share specific transcription factors. Nature 1990, 344:447-449. 206. Sposi NM, Zon LI, Care A, Valtieri M, Testa U, Gabbianelli M, Mariani G, Bottero L, Mather C, Orkin SH, et al.: Cell cycle-dependent initiation and lineage-dependent abrogation of GATA-1 expression in pure differentiating hematopoietic progenitors. Proc Natl Acad Sci U S A 1992, 89:6353-6357. 207. Leonard M, Brice M, Engel JD, Papayannopoulou T: Dynamics of GATA transcription factor expression during erythroid differentiation. Blood 1993, 82:1071-1079. 208. Ito E, Toki T, Ishihara H, Ohtani H, Gu L, Yokoyama M, Engel JD, Yamamoto M: Erythroid transcription factor GATA-1 is abundantly transcribed in mouse testis. Nature 1993, 362:466-468. 209. Yomogida K, Ohtani H, Harigae H, Ito E, Nishimune Y, Engel JD, Yamamoto M: Developmental stage- and spermatogenic cycle-specific expression of transcription factor GATA-1 in mouse Sertoli cells. Development 1994, 120:1759-1766. 210. Zon LI, Yamaguchi Y, Yee K, Albee EA, Kimura A, Bennett JC, Orkin SH, Ackerman SJ: Expression of mRNA for the GATA-binding proteins in human eosinophils and basophils: potential role in gene transcription. Blood 1993, 81:3234-3241. 211. Dorfman DM, Wilson DB, Bruns GA, Orkin SH: Human transcription factor GATA-2. Evidence for regulation of preproendothelin-1 gene expression in endothelial cells. J Biol Chem 1992, 267:1279-1285. 212. Wilson DB, Dorfman DM, Orkin SH: A nonerythroid GATA-binding protein is required for function of the human preproendothelin-1 promoter in endothelial cells. Mol Cell Biol 1990, 10:4854-4862. 213. George KM, Leonard MW, Roth ME, Lieuw KH, Kioussis D, Grosveld F, Engel JD: Embryonic expression and cloning of the murine GATA-3 gene. Development 1994, 120:2673-2686. 214. Kornhauser JM, Leonard MW, Yamamoto M, LaVail JH, Mayo KE, Engel JD: Temporal and spatial changes in GATA transcription factor expression are coincident with development of the chicken optic tectum. Brain Res Mol Brain Res 1994, 23:100-110. 215. Pevny L, Simon MC, Robertson E, Klein WH, Tsai SF, D'Agati V, Orkin SH, Costantini F: Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 1991, 349:257-260. 216. Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, Alt FW, Orkin SH: An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 1994, 371:221-226. 217. Weiss MJ, Keller G, Orkin SH: Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev 1994, 8:1184-1197. 218. Rodriguez-Tarduchy G, Collins M, Lopez-Rivas A: Regulation of apoptosis in interleukin-3-dependent hemopoietic cells by interleukin-3 and calcium ionophores. Embo J 1990, 9:2997-3002. 219. Sambrook J, Russell DW: Molecular cloning : a laboratory manual edn 3rd. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press; 2001. 220. Sambrook J, Fritsch EF, Maniatis T: Molecular cloning : a laboratory manual edn 2nd. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory; 1989. 221. Chen W, Yu YL, Lee SF, Chiang YJ, Chao JR, Huang JH, Chiong JH, Huang CJ, Lai MZ, Yang-Yen HF, et al.: CREB is one component of the binding complex of the Ces-2/E2A-HLF binding element and is an integral part of the interleukin-3 survival signal. Mol Cell Biol 2001, 21:4636-4646. 222. Wadman IA, Osada H, Grutz GG, Agulnick AD, Westphal H, Forster A, Rabbitts TH: The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. Embo J 1997, 16:3145-3157. 223. Saccani S, Pantano S, Natoli G: Two waves of nuclear factor kappaB recruitment to target promoters. J Exp Med 2001, 193:1351-1359. 224. Visvader JE, Crossley M, Hill J, Orkin SH, Adams JM: The C-terminal zinc finger of GATA-1 or GATA-2 is sufficient to induce megakaryocytic differentiation of an early myeloid cell line. Mol Cell Biol 1995, 15:634-641. 225. Huang HM, Li JC, Hsieh YC, Yang-Yen HF, Yen JJ: Optimal proliferation of a hematopoietic progenitor cell line requires either costimulation with stem cell factor or increase of receptor expression that can be replaced by overexpression of Bcl-2. Blood 1999, 93:2569-2577. 226. Tsai FY, Orkin SH: Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 1997, 89:3636-3643. 227. Pandolfi PP, Roth ME, Karis A, Leonard MW, Dzierzak E, Grosveld FG, Engel JD, Lindenbaum MH: Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet 1995, 11:40-44. 228. Hendriks RW, Nawijn MC, Engel JD, van Doorninck H, Grosveld F, Karis A: Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur J Immunol 1999, 29:1912-1918. 229. Chtanova T, Kemp RA, Sutherland AP, Ronchese F, Mackay CR: Gene microarrays reveal extensive differential gene expression in both CD4(+) and CD8(+) type 1 and type 2 T cells. J Immunol 2001, 167:3057-3063. 230. Towatari M, May GE, Marais R, Perkins GR, Marshall CJ, Cowley S, Enver T: Regulation of GATA-2 phosphorylation by mitogen-activated protein kinase and interleukin-3. J Biol Chem 1995, 270:4101-4107. 231. Yamagata T, Mitani K, Oda H, Suzuki T, Honda H, Asai T, Maki K, Nakamoto T, Hirai H: Acetylation of GATA-3 affects T-cell survival and homing to secondary lymphoid organs. Embo J 2000, 19:4676-4687. 232. Ozawa Y, Towatari M, Tsuzuki S, Hayakawa F, Maeda T, Miyata Y, Tanimoto M, Saito H: Histone deacetylase 3 associates with and represses the transcription factor GATA-2. Blood 2001, 98:2116-2123. 233. Arai KI, Lee F, Miyajima A, Miyatake S, Arai N, Yokota T: Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem 1990, 59:783-836. 234. Conscience JF, Verrier B, Martin G: Interleukin-3-dependent expression of the c-myc and c-fos proto-oncogenes in hemopoietic cell lines. Embo J 1986, 5:317-323. 235. Yoshimura A, Ohkubo T, Kiguchi T, Jenkins NA, Gilbert DJ, Copeland NG, Hara T, Miyajima A: A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. Embo J 1995, 14:2816-2826. 236. Huang HM, Huang CJ, Yen JJ: Mcl-1 is a common target of stem cell factor and interleukin-5 for apoptosis prevention activity via MEK/MAPK and PI-3K/Akt pathways. Blood 2000, 96:1764-1771. 237. Ferby IM, Waga I, Hoshino M, Kume K, Shimizu T: Wortmannin inhibits mitogen-activated protein kinase activation by platelet-activating factor through a mechanism independent of p85/p110-type phosphatidylinositol 3-kinase. J Biol Chem 1996, 271:11684-11688. 238. Darnell JE, Jr., Kerr IM, Stark GR: Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994, 264:1415-1421. 239. Ward AC, Touw I, Yoshimura A: The Jak-Stat pathway in normal and perturbed hematopoiesis. Blood 2000, 95:19-29. 240. Orkin SH: Transcription factors and hematopoietic development. J Biol Chem 1995, 270:4955-4958. 241. Clevers HC, Grosschedl R: Transcriptional control of lymphoid development: lessons from gene targeting. Immunol Today 1996, 17:336-343. 242. Clevers H, Ferrier P: Transcriptional control during T-cell development. Curr Opin Immunol 1998, 10:166-171. 243. Ouyang W, Ranganath SH, Weindel K, Bhattacharya D, Murphy TL, Sha WC, Murphy KM: Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 1998, 9:745-755. 244. Zhang DH, Cohn L, Ray P, Bottomly K, Ray A: Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem 1997, 272:21597-21603. 245. Zheng W, Flavell RA: The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997, 89:587-596. 246. Ting CN, Olson MC, Barton KP, Leiden JM: Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 1996, 384:474-478. 247. Kurata H, Lee HJ, O'Garra A, Arai N: Ectopic expression of activated Stat6 induces the expression of Th2-specific cytokines and transcription factors in developing Th1 cells. Immunity 1999, 11:677-688. 248. Ho IC, Hodge MR, Rooney JW, Glimcher LH: The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 1996, 85:973-983. 249. Kim JI, Ho IC, Grusby MJ, Glimcher LH: The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity 1999, 10:745-751. 250. Agarwal S, Avni O, Rao A: Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo. Immunity 2000, 12:643-652.
|