跳到主要內容

臺灣博碩士論文加值系統

(35.168.110.128) 您好!臺灣時間:2022/08/16 07:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:耿全福
研究生(外文):Chuian-Fu Ken
論文名稱:斑馬魚銅鋅型超氧歧化酶及過氧化氫酶之生化分析及細胞轉殖後之抗氧化功能研究
論文名稱(外文):Biochemical studies of zebrafish Cu/Zn-SOD and catalase and their anti-oxidative function by cellular transgenesis
指導教授:蕭介夫蕭介夫引用關係吳金洌吳金洌引用關係
指導教授(外文):Jeu-Fu ShawJen-Leih Wu
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:120
中文關鍵詞:銅鋅型超氧歧化酶過氧化氫酶定位點突變生化分析轉染斑馬魚
外文關鍵詞:Cu/Zn-SODcatalasesite-specific mutagenesisbiochemical analysistransfectionzebrafish
相關次數:
  • 被引用被引用:5
  • 點閱點閱:1014
  • 評分評分:
  • 下載下載:238
  • 收藏至我的研究室書目清單書目收藏:1
為了探討魚類抗氧化酵素的生化特性及生理功能,利用Rapid Amplification cDNA End (RACE)PCR的方法選殖出斑馬魚銅鋅型超氧歧化酶(Cu/Zn- superoxide dismutase)及過氧化氫酶(catalase)之cDNA,全長各為727 bp及2,271 bp,將其基因以大腸桿菌表現可以成功的獲得具有酵素活性的重組蛋白質。由於野生株銅鋅型超氧歧化酶的活性比較差,因此利用定位點突變的方法,將斑馬魚銅鋅型超氧歧化酶第七個氨基酸Cys變為Ala,經由生化特性分析顯示,突變株銅鋅型超氧歧化酶比活性(specific activity)大於野生株2倍,耐熱性高達90℃ 30分鐘,對於 4﹪SDS及2.0M的imidazole 處理有比較高的耐受性,證實此銅鋅型超氧歧化酶突變株具有較高的酵素穩定性。在in vitro實驗中,以0.5μg/ml lipopolysaccharide(LPS)可激活鼷鼠神經膠細胞產生大量一氧化氮自由基而造成細胞死亡,利用微脂粒轉染DNA的方式,將選殖到的銅鋅型超氧歧化酶 cDNA轉入鼷鼠神經膠細胞中,可明顯抑制由LPS激活細胞所產生一氧化氮的量,達到保護神經細胞的作用。在in vivo實驗中,以農藥paraquat(PQ)處理斑馬魚仔魚,其半致死濃度為100 ppm,此時仔魚體內超氧歧化酶活性剩下原來60﹪,利用浸泡方法將110 unit的重組野生株及突變株銅鋅型超氧歧化酶處理仔魚可增加仔魚超氧歧化酶的活性高達1.8倍,而且可以明顯協助仔魚對抗因PQ所造成的氧化壓力。
Cu/Zn-superoxide dismutase (Cu/Zn-SOD) and catalase cDNA were cloned from zebrafish using RACE-PCR technique; both of the cDNA coding regions were successfully expressed in Escherichia coli. The wild type Cu/Zn-SOD(ZSOD1) was purified by His-tagged technique and was found labile than plant Cu/Zn-SOD. In an attempt to enhance enzyme stability, a mutant enzyme (ZSODC7A, Cys-7 to Ala) was obtained by site-specific mutagenesis and showed higher thermo-stability than wild-type enzyme. In addition, we investigated the modulation of the activation of microglial cell by transfecting a Cu/Zn-SOD cDNA to microglia cells. Parental and transfected BV-2 cells were then subjected to LPS stimulation. The results showed that in Cu/Zn-SOD-transfected microglial cells, the expression and activity of Cu/Zn-SOD increased. On the other hand, these cells upon activation by LPS, had lower production of NO than the parental microglial cells. This finding suggests that the transfected Cu/Zn-SOD may provide a neuroprotective function via suppression of microglial activation. Finally, the recombinant ZSOD1 and ZSODC7A were used to protect fish from 100 ppm of paraquat induced oxidative injury by soaking fish larva with SOD enzyme. The results were significant.
目錄
中文摘要 i
英文摘要 ii
目錄 iii
表目錄 vii
圖目錄 viii
附錄 x
縮寫表 xi
第一章 緒論 1
第一節、自由基 ( free radical ) 1
第二節、自由基的生成 1
壹、內源性 1
貳、外源性 2
第三節、自由基的種類 3
第四節、常見的自由基傷害 5
第五節、自由基與神經系統退化性病變 6
第六節、生物體內自由基之防禦系統 9
第七節、抗氧化酵素 10
壹、SOD 10
貳、Catalase 16
參、Glutathione peroxidase 17
第八節、實驗緣起 17
第二章 實驗材料與方法
第一節、實驗材料
壹、材料 21
貳、載體 21
參、菌種 21
肆、細胞類別 22
伍、培養基 22
陸、抗體 23
柒、套組(Kits) 23
捌、Marker 24
玖、Transfer membrane 24
拾、儀器設備 24
拾壹、實驗藥品 25
拾貳、引子 25
第二節、實驗方法
壹、Total RNA之抽取 27
貳、cDNA合成 28
參、斑馬魚銅鋅型超氧歧化酶基因之選殖(cloning) 31
肆、突變株斑馬魚銅鋅型超氧歧化酶(ZSODC7A)的產生 36
伍、野生株(ZSOD1)及突變株(ZSODC7A)的表現 36
陸、ZSOD1與ZSODC7A重組蛋白質之純化 39
柒、斑馬魚銅鋅型超氧歧化酶之生化特性分析 40
捌、斑馬魚catalase 基因之選殖與表現 43
玖、銅鋅型超氧歧化酵素cDNA轉染於神經膠(microglia)細胞,探討對該細胞的影響 45
拾、銅鋅型超氧歧化酵素增加仔魚抗氧化能力之實驗 49
拾壹、Cu/Zn-SOD基因轉殖之探討 50
第三章、結果與討論
第一節、斑馬魚銅鋅型超氧歧化酶cDNA的選殖 52
第二節、野生株與突變株銅鋅型超氧歧化酶之表現與純化 54
第三節、斑馬魚銅鋅型超氧歧化酶生化特性分析 56
第四節、斑馬魚過氧化氫酶(catalase)cDNA的選殖 59
第五節、斑馬魚銅鋅型超氧歧化酶抑制神經膠細胞內NO之激活 62
第六節、銅鋅型超氧歧化酶增加仔魚抵抗PQ氧化壓力 65
第七節、銅鋅型超氧歧化酶之基因轉殖 66
第四章、結論 68
第五章、參考文獻 69
第五章、參考文獻
Aebi, H. Catalase in vitro. Meth. Enzym. 1984, 105, 121-126.
Aksnes, A.; Njaa, L.R. Catalase, glutathione peroxidase and superoxide dismutase in different fish species. Comp. Biochem. Physiol. 1981, 69B, 893-896.
Ames, B. N.; Shigenaga, M. K.; Hagen, T. M. Oxidants, antioxidants and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA. 1993, 90, 7915-7922.
Bainy, A. C. D.; Saito, E.; Carvalho, P. S. M.; Junqueira, V. Oxidative stress in gill, erythrocytes, liver and kidney of Nile tilapia (Oreochromis niloticus) from a polluted site. Aquat. Toxicol. 1996, 34, 151-162.
Bairoch, A.; Bucher, P.; Hofmann, K. The PROSITE database, its status in 1997. Nucleic Acids Res. 1997, 25, 217-221.
Banci, L.; Bertini, I.; Chiu, C. Y.; Mullenbach, G. T.; Viezzoli, M. S. Synthesis and characterization of a monomeric mutant Cu/Zn superoxide dismutase with partially reconstituted enzymic activity. Eur. J. Biochem. 1995, 234, 855-60.
Bannister, J. V.; Bannister, W. H.; Rotilio, G. Aspect of the structure, funtion and applications of superoxide dismutase. Crit. Rev. Biochem. 1987, 22, 111-180.
Bannister, J. V.; Anstasi, A.; Bannister, W. H. Cytosol superoxide dismutase from swordfish (Xiphias gladius L.) liver. Comp. Biochem. Physiol. 1977, 56B, 235-238.
Bauer, G. Reactive oxygen and nitrogen species: efficient, selective, and interactive signals during intercellular induction of apoptosis. Anticancer Res. 2000, 20(6B), 4115-39.
Beal, M. F. Aging,energy and oxidative stress in neurodegenerative disease. Neurol. 1995, 38, 357-366.
Beauchamp, C.; Fridovich, I. Improved assays and an assay applicable to acrylamide gel. Anal. Biochem. 1971, 44, 276-287.
Beckman, J. S.; Carson, M.; Smith, C. D. Koppenol, W. H. ALS, SOD and peroxynitrite. Nature. 1993, 364(6438), 584-90.
Beyer, W. F Jr.; Fridovich, I. In vivo competition between iron and manganese for occupancy of the active site region of the manganese-superoxide dismutase of Escherichia coli. J. Biol. Chem. 1991, 266 (1), 303-8.
Beyer, W. F. Jr.; Fridovich, I.; Mullenbach, G. T.; Hallewell, R. Examination of the role of arginine-143 in the human copper and zinc superoxide dismutase by site-specific mutagenesis. J. Biol. Chem. 1987, 262(23), 11182-7.
Bitting, L.; Naidu, A.; Cordell, B.; Murphy, G. M. Jr. β-amyloid peptide secretion by a microglial cell line is induced byβ-amyloid-(25-35) and lipopolysaccharide. J. Biol. Chem. 1996, 271, 16084-16089.
Bordo, D.; Djinovic, K.; Bolognesi, M. Conserved patterns in the Cu,Zn superoxide dismutase family. J. mol. Biol. 1994, 238, 366-386.
Bravard, A.; Sabatier, L.; Hoffschir, F.; Ricoul, M.; Luccioni, C.; Dutrillaux, B. SOD2: a new type of tumor-suppressor gene?. Int. J. Cancer. 1992, 51(3), 476-80.
Bridges, S. M. Distribution of iron containing superoxide dismutase in vesular plants. Plant Physiol. 1981, 68, 275-278.
Brock, C. J.; Walker, J. E. Superoxide dismutase from Bacillus stearothermophilus. Complete amino acid sequence of a manganese enzyme. Biochem. 1980, 19, 2873-2882.
Cadenas, E. Mechanisms of oxygen activation and reactive oxygen species detoxification. 1995, pp. 1-61. In Chapman and Hall (Eds.) Oxidative Stress and Antioxidant Defenses in Biology. New York. USA.
Calabrese, L.; Polticelli, F.; O’Neill, P.; Galtieri, A.; Bara, D.; Schinina, E.; Bossa, F. Substitution of arginine for lysine 134 alters electrostatic parameters of the active site in shark Cu,Zn superoxide dismutase. FEBS Lett. 1989, 250, 49-52.
Cavalieri, E. L.; Rogan, E. G. Central role of radical cations in metabolic activation of polycyclic aromatic hydrocarbons. Xenobiotica. 1995, 25, 677-688.
Cheng, K. C.; Cahill, D. S.; Kasai, H.; Nishimura, S.; Loeb, L. A. 8-Hydroxyguanine, an abundant from of oxidative DNA Damage, causes GT and AC substitution. J. Biol. Chem. 1992, 267, 166-172.
Christian, B. Alzheimer’s disease and oxidative stress : implications for novel therapeutic approaches. Prog. Neurobio. 1999, 57, 301-323.
Church, S. L.; Grant, J. W.; Meese, E. U.; Trent, J. M. Sublocalization of the gene encoding manganese superoxide dismutase (MnSOD/SOD2) to 6q25 by fluorescence in situ hybridization and somatic cell hybrid mapping. Genomics. 1992, 14(3), 823-5.
Church, S. L.; Grant, J. W.; Ridnour, L. A.; Oberley, L. W.; Swanson, P. E., Meltzer, P. S. ; Trent, J. M. Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc. Natl. Acad. Sci. USA. 1993 , 90(7), 3113-7.
Church, D. F.; Pryor, W. A. Free radical chemistry of cigarette smoke and its toxicological implications. Environ. Health.Perspect. 1985, 64, 111-126.
Clerch, L. B. A 3’ untranslated region of catalase mRNA composed of a stem-loop and dinucleotide repeat elements binds a 69-kDa redox-sensitive protein. Arch. Biochem. Biophys. 1995, 317(1), 267-274.
Cole, N.; Siddique, T. Genetic disorders of motor neurons. Semin. Neurol. 1999, 19(4), 407-18.
Connor, J. R.; Menzies, S. L.; St Marin, S. M.; Mufson, E. J. A histochemical study of iron,transferrin and ferritin in Alzheimer’s disease brain. J. Neurosci. Res. 1992, 31, 75-83.
Curnutte, J. T.; Babior, B. M. Chronic granulomatous disease. Adv. Hum.Genet. 1987, 16: 229-297.
Day, B.J.; Patel, M.; Calavetta, L.; Chang, L.Y.; Stamler, J.S. A mechanism of paraquat toxicity involving nitric oxide synthase. Proc. Natl. Acad. Sci. USA. 1999, 96 (22), 12760-12765.
Deisseroth, A.; Dounce, A.L. Catalase: physical and chemical properties, mechanism of catalysis, and physiological role. Physiol. Rev. 1970, 50, 319-375.
Dimitrova, M.; St. Tishinova, V.; Velcheva, V. Combined effect of zinc and lead on the hepatic superoxide dismutase-catalase system in carp (cyprinus carpio). Comp. Biochem. Physiol. 1994, 108C, 43-46.
Djinovic, K.; Gatti, G.; Coda. A.; Antolini, L.; Pelosi, G.; Desideri, A.; Falconi, M.; Marmocchi, F.; Rotilio, G.; Bolognesi M. Crystal structure of yeast Cu,Zn superoxide dismutase. Crystallographic refinement at 2.5 A resolution. J Mol. Biol. 1992, 225(3), 791-809.
Elizabeth, C.; Daniel, E. Molecule of the year. NO news is good news. Science. 1992, 258(18), 1862-1865.
Fisher, C. L.; Cabelli, D. E.; Tainer, J. A.; Hallewell, R. A.; Getzoff, E. D. The role of arginine 143 in the electrostatics and mechanism of Cu/Zn superoxide dismutase: computational and experimental evaluation by mutational analysis. Proteins. 1994, 19(1), 24-34.
Fita, I.; Rossmann, M. G. The active center of catalase. J. Mol. Biol. 1985, 185(1), 21-37.
Forman, H.J.; Fridovich, I. On the stability of bovine superoxide dismutase. The effects of metals. J. Biol. Chem. 1973, 248, 2645-2649.
Frankel, E. N. Recent advances in lipid oxidation. J. Sci. Food. Agric. 1991, 54: 495-511.
Fridovich, I. Superoxide dismutases. Adv. Enzymol. 1986, 58, 61-97.
Furuta, S.; Hayashi, H.; Hijikata, M.; Miyazawa, S.; Osumi, T.; Hashimoto, T. Complete nucleotide sequence of cDNA and deduced amino acid sequence of rat liver catalase. Proc. Natl. Acad. Sci. USA. 1986, 83, 313-317.
Gebicke-haerter, P. J.; Calker, D. V.; Norenberg, W.; Illes, P. Molecular mechanisms of microglial activation. A implications for regeneration and neurodegenerative disease. Neurochem. Int. 1996, 29, 1-12.
Geller, B. L.; Winge, D.R. A method for distinguishing Cu,Zn- and Mn-containing superoxide dismutases. Anal. Biochem. 1983, 128(1), 86-92.
Getzoff, E. D.; Tainer, J. A.; Stempien, M. M.; Bell, G. I.; Hallewell, R. A. Evolution of CuZn superoxide dismutase and the Greek key beta-barrel structural motif. [erratum appears in Proteins 1990;8(4):398-9.]. Proteins. 1989, 5(4), 322-36.
Hagen, U.(1989) Biochemical aspects of radiation biology. Experientia. 45(1):7-12
Hallewell, R.A.; Imlay, K.C.; Lee, P.; Fong, N.M.; Gallegos, C.; Getzoff, E.D.; Tainer, J.A.; Cabelli, D.E.; Tekamp-Olson, P.; Mullenbach, G.T. Thermostabilization of recombinant human and bovine CuZn superoxide dismutases by replacement of free cysteines. Biochem. Biophys. Res. Commun. 1991, 181(1), 474-480.
Halliwell, B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 1994, 344(8924), 721-4.
Halliwell, B.; Gutteridge, J. M. Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet. 1984, 1, 1396-1397.
Halliwell, B.; Murcia, M. A.; Chirico, S.; Aruoma, O. I. Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit. Rev. Food Sci. Nutr. 1995, 35, 7-20.
Hallwell, B. The role of oxygen radicals n human disease, with particular reference to the vascular system. Haemostasis. 1993, 23, 118-126.
Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 1956, 11, 298-300.
Harris, J. I.; Auffret, A. D.; Northrop, F. D.; Walker, J. E. Structural comparisons of superoxide dismutases. Eur. J. Biochem. 1980, 106, 297-303.
Hazlewood, C.; Davies, M. J. Damage to DNA and RNA by tumour promoter-derived alkoxyl radicals: an EPR spin trapping study. Biochem. Soc. Trans. 1995, 23, 259S.
Ho, Y. S.; Magnenat, J. L.; Gargano, M.; Cao, J. The nature of antioxidant defense mechanisms: a lesson from transgenic studies. Environ. Health Persp. 1998, 106 Suppl 5, 1219-28.
Huang, P.; Feng, L.; Oldham, E. A.; Keating, M. J.; Plunkett, W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature. 2000, 407(6802), 390-5.
Hunt, C. R.; Sim, J. E.; Sullivan, S. J.; Featherstone, T.; Golden, W.; Von Kapp-Herr, C.; Hock, R. A.; Gomez, R. A.; Parsian, A. J.; Spitz, D. R. Genomic instability and catalase gene amplification induced by chronic exposure to oxidative stress. Cancer Res. 1998, 58(17), 3986-92.
Imai, H.; Narashima, K.; Arai, M.; Sakamoto, H.; Chiba, N.; Nakagawa, Y. Suppression of leukotriene formation in RBL-2H3 cells that overexpressed phospholipid hydroperoxide glutathione peroxidase. J. Biol. Chem. 1998, 273(4), 1990-7.
Inoue, K.; Yamashita, S.; Hata, J. I.; Kabeno, S.; Asada, S. & Nagahisa, E. Electroporation as a new technique for producing transgenic fish. Cell. Diff. and Devel. 1990, 29, 123-128.
IPCS. Paraquat and Diquat, Environmental Health Criteria, 39, WHO, Geneva, 1984, pp. 13-128.
Keele BB Jr. McCord JM. Fridovich I. Superoxide dismutase from escherichia coli B. A new manganese-containing enzyme. J. Biol. Chem. 245(22):6176-81, 1970 .
Kehrer, J. P. (1993) Free radicals as mediators of tissue injury and disease. Critical Reviews in Toxicology. 23(1): 21-48.
Kelner, M. J.; Bagnell, R.; Montoya, M.; Estes, L.; Uglik, S. F.; Cerutti, P. Transfection with human copper-zinc superoxide dismutase induces bidirectional alterations in other antioxidant enzymes, proteins, growth factor response, and paraquat resistance. Free Radic. Biol. Med. 1995, 18, 497-506.
Kiningham, K. K.; Oberley, T. D.; Lin, S.; Mattingly, C. A.; Clair, D. K. Overexpression of manganese superoxide dismutase protects against mitochondrial-initiated poly (ADP-ribose) polymerase-mediated cell death. FASEB J. 1999, 13, 1601-10.
Kitagawa. Y.; Tanaka, N.; Hata, Y.; Kusunoki, M.; Lee, G. P.; Katsube, Y.; Asada, K.; Aibara. S.; Morita, Y. Three-dimensional structure of Cu,Zn-superoxide dismutase from spinach at 2.0 A resolution. J. Biochem. 1991, 109(3), 477-85.
Klotz, M. G.; Klassen, G. R.; Loewen, P. C. Phylogenetic relationships among prokaryotic and eukaryotic catalases. Mol. Biol. Evol. 1997, 14(9), 951-958.
Komada, F.; Nishiguchi, K.; Tanigawara, Y.; Akamatsu, T.; Wu, X.Y.; Iwakawa, S.; Okumura, K. Effect of transfection with superoxide dismutase expression plasmid on superoxide anion induced cytotoxicity in cultured rat lung cells. Biol. Pharm. Bull. 1996, 19(2), 274-279.
Kondo, T.; Terajima, H.; Todoroki, T.; Hirano, T.; Ito, Y.; Usia, T.; Messmer, K. Prevention of hepatic ischemia-reperfusion injury by SOD-DIVEMA conjugate. J. Surg. Res. 1999, 85(1), 26-36.
Koppenol, W. H. Superoxide dismutase and oxygen toxicity. Bull. Europ. de Physiopathol. Respir. 1981, 17 Suppl, 85-90.
Lütcke, H. A.; Chow, K. C.; Mickel, F. S.; Moss, K. A.; Kern, H. F.; Scheele, G. A. Selection of AUG initiation codons differs in plants and animals. EMBO J. 1987, 6, 43-48.
Lakke, J. P. Images of Parkinson''s disease, past and present. J. Hist. Neurosci. 1994, 3(2), 131-8.
Lebovitz, R. M.; Zhang, H.; Vogel, H.; Cartwright, J.; Jr. Dionne, L.; Lu, N.; Huang, S.; Matzuk, M. M. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc. Natl. Acad. Sci. USA. 1996, 93(18), 9782-7.
Lele, Z.; Krone, P. H. Zebrafish as a model system in developmental, toxicological and transgenic research. Biotechnol. Adv. 1996, 14, 57-72.
Li, Y.; Huang, T. T.; Carlson, E. J.; Melov, S.; Ursell, P. C.; Olson, J. L.; Noble, L. J.; Yoshimura, M. P.; Berger, C.; Chan, P. H. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 1995, 11(4), 376-81.
Lim, J. H.; Yu, Y. G.; Choi, I. G.; Ryu, J. R.; Ahn, B. Y.; Kim, S. H.; Han, Y. S. Cloning and expression of superoxide dismutase from Aquifex pyrophilus a hyperthermophilic bacterium. FEBS. 1997, 406, 142-6.
Lim, J. H.; Yu, Y. G.; Han, Y. S.; Cho, S.; Ahn, B. Y.; Kim, S. H.; Cho, Y. The crystal structure of an Fe-superoxide dismutase from the hyperthermophile Aquifex pyrophilius at 1.9Å resolution: structure basis for thermpstability. J. Mol. Biol. 1997, 270, 259-274.
Lin, C. T.; Kuo, T. J.; Shaw, J. F and Kao, M. C. Characterization of the dimer-monomer equilibrium of the papaya copper/zinc superoxide dismutase and it’s equilibrium shift by a single amino acid mutation. J. Arg. Food. Chem. 1999, 47, 2944-2949.
Lin, C. T.; Lin, M. T.; Chen, Y. T.; Shaw, J. F. Subunit interaction enhances enzyme activity and stability of sweet potato cytosolic Cu/Zn-superoxide dismutase purified by a His-tagged recombinant protein method. Plant Mol. Biol. 1995b, 28, 303-311.
Lin, C. T.; Lin, M. T.; Chen, Y. T.; Shaw, J. F. The gene structure of Cu/Zn-superoxide dismutase from sweet potato. Plant Physiol. 1995a, 108, 827-828.
Lin, C. T.; Yeh, K. W.; Kao, M. C.; Shaw, J. F. Cloning and characterization of a cDNA encoding the cytosolic copper/zinc-superoxide dismutase from sweet potato tuberous root. Plant Mol. Biol. 1993, 23, 911-913.
Lin, M.T.; Kuo, T.J.; Lin, C.T. Molecular cloning of a cDNA encoding copper/zinc-superoxide dismutase from papaya fruit and overexpression in Escherichia coli. J. Agri. Food. Chem. 1998, 46, 344-348.
Lin, Z.H.; Wang, Y.F.; Sarai, A.; Yasue, H. Swine catalase deduced from cDNA and localization of the catalase gene on swine chromosome 2p16-p151. Biochem. Genet. 1997, 35, 297-302.
Lipton, S. A.; Chol, Y. B.; Pan, Z. H. Lel, S. Z.; Chen, H. S.; Sucher, N. J.; Loscalzo, Singel D. J. and Stamler, J.S. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso compounds. Nature. 1993, 364, 626-632.
Malinowski, D.P.; Fridovich, I. Subunit association and side-chain reactivities of bovine erythrocyte superoxide dismutase in denaturing solvents. Biochem. 1979, 18, 5055-5060.
Maly, F. E. The β-lymphocyte: a newly recognized source of reactive oxygen species with immunoregulatory potential. Free Rad. Res. Commun. 1990, 8, 143-148.
Mann, T.; Keilin, D. Haemocuprein and hepatocuprein, copper-proein compounds of blood and liver in mammals. Proc. R. Soc. London Ser B. 1939, 128, 303.
Mather-Mihaich, E.; Diguilio, R. T. Antioxidant enzyme activities and malondialdehyde, glutathione and methemoglobin concentration in channel catfish exposed to DFF and N-butylmercaptan. Comp. Biochem. Physiol. 1986, 85C, 427-432.
McCord, J. M.; Fridovich, I. Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049.
Mclean, E.; Ash, R. Modified uptake of the protein antigen horseradish peroxidase (HRP), following oral delivery to rainbow trout, Oncorhynchus mykiss. Aquaculture 1990, 87, 373-379.
McRee, D.E.; Redford, S.M.; Getzoff, E.D.; Lepock, J.R.; Hallewell, R.A.; Tainer, J.A. Changes in crystallographic structure and thermostability of a Cu,Zn superoxide dismutase mutant resulting from the removal of a buried cysteine. J. Biol. Chem. 1990, 265, 14234-14241.
Meier, B.; H. Radeke, S. Selle, H. H. Raspe, H. Sies, K. Resch and G. G. Habermehl. Human fibroblasts release reactive oxygen species in response to treatment with synovial fluids from patients suffering from arthritis. Free Radical Res. Commun. 1990, 8, 149-160.
Muthy, M. R. N.; Reid, T. J.; Sicignano, A.; Tanaka, N.; Rossmann, M. G. Structure of beef liver catalase. J. Mol. Biol. 1981, 152, 465-499.
Nakano, T.; Sato, M.; Takeuchi, M. Superoxide dismutase activity in the skin of fish. J. Fish Biol. 1993, 43, 492-496.
Nakano, T.; Sato, M.; Takeuchi, M. Unique molecular properties of superoxide dismutase from teleost fish skin. FEBS Lett. 1995, 360, 197-201.
Nicholls, D. M.; Teichert-Kuliszewska, K.; Girgis, G. R. Effect of chronic mercuric chloride exposure on liver and muscle enzymes in fish. Comp. Biochem. Physiol. 1989, 94C, 265-270.
Ogata, T.; Manabe, S. Correlation between lipid peroxidation and morphological manifestation of paraquat-induced lung injury in rats. Arch. Toxicol. 1990, 64(1), 7-13.
Olanow, C. W. A radical hypothesis for neurodegeneration. Trends Neurosci. 1993, 16, 439-444.
Orr, E.C.; Bewley, G.C.; Orr, W.C. cDNA and deduced amino acid sequence of Drosophila catalase. Nucleic Acids Res. 1990, 18(12), 3663.
Orr, W.C.; Sohal, R.S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 1994, 263, 1128-1130.
Pan, S. M.; Yan, Y. Y. The isozymes of superoxide dismutase in rice. Bot. Bull. Acad. Sin. 1991, 32, 253.
Parge, H. E.; Hallewell, R. A.; Tainer, J. A. Atomic structures of wild-type and thermostable mutant recombinant human Cu,Zn superoxide dismutase. [erratum appears in Proc Natl Acad Sci U S A 1992 Nov 15;89(22):11106.] Proc. Natl. Acad. Sci. USA. 1992, 89(13), 6109-13.
Park, J. I.; Grant, C. M.; Davies, M. J.; Dawes, I. W. The cytoplasmic Cu,Zn superoxide dismutase of saccharomyces cerevisiae is required for resistance to freeze-thaw stress. Generation of free radicals during freezing and thawing. J. Biol. Chem. 1998, 273, 22921-22928.
Parkes, T. L.; Elia, A. J.; Dickinson, D.; Hilliker, A. J.; Phillips, J.. P.; Boulianne, G. L. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat. Genet. 1998, 19, 171-174.
Pedrajas, J.R.; Peinado, J.; Lopez-Barea, J. Purification of Cu, Zn-superoxide dismutase isoenzymes from fish liver: appearance of new isoforms as a consequence of pollution. Free Rad. Comms. 1993, 19, 29-41.
Pedrajas, J. R.; Peinado, J.; Lopez-Barea, J. Oxidative stress in fish exposed to model xenobiotics. Oxidatively modified forms of Cu, Zn-superoxide dismutase as potential biomarkers. Chemico-Biol. Interact. 1995, 98, 267-282.
Peress, N. S.; Fleit, H. B.; E. Perillo, R. Kuljis, C. Pezzullo Identification of Fc gamma RI,II and III on normal human brain ramified microglia and on microglia in senile plaques in AD. J. Neuroimmunol. 1993, 48, 71-79.
Petrova, T. V.; Akama, K. T.; Van Eldik, L. J. Selective modulation of BV-2 microglial activation by prostaglandin E2 . J. Biol. Chem. 1999, 274, 28823-28827.
Pollack, I. F.; Lund R. D. The blood-brain barrier protects foreign antigens in the brain from immune attack. Exp.Neurol. 1990, 108,114-121.
Power, D. A.; Hereford, L.; Cole, T. Electroporation : a method for transferring into the gametes of zebrafish (Brachydanio rerio), channel catfish (Ictalurus punctatus), and common carp (Cyprinus carpio). Mol. Mar. Biol. Biotech. 1992, 1, 301-308.
Pryor, W. A.; Lightsey, J. W. and Church, D. F. Reaction of nitrogen dioxide with alkenes and polyunsaturated fatty acids: addition and hydrogen abstraction mechanisms. J. Am. Chem. Soc. 1982, 104, 6685.
Quan, F.; Korneluk, R. G.; Tropak, M. B.; Gravel, R. A. Isolation and characterization of the human catalase gene. Nucleic Acids Res. 1986, 14(13), 5321-5335.
Radi, R.; Rodriguez, M.; Castro, L.; Telleri, R. Inhibition of mitochondrial electron transport by peroxynitrite. Archives of Biochemistry & Biophysics. 1994, 308(1), 89-95.
Radi, A. A. R.; Marcovics, B. Effects of metal ions on the antioxidant enzyme activities, protein contents and lipid peroxidation of carp tissues. Comp. Biochem. Physiol. 1988, 90C, 69-72.
Reaume, A. G.; Elliott, J. L.; Hoffman, E. K.; Kowall, N. W.; Ferrante, R. J.; Siwek, D. F.; Wilcox, H. M.; Flood, D. G.; Beal, M. F.; Brown, R. H; Jr. Scott, R. W.; Snider, W. D. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nature Genetics. 1996, 13(1), 43-7.
Reid, T. M.; Loeb, L. A. Effect of DNA repair enzymes on mutagenesis by oxygen free radicals. Mutat. Res. 1993, 289, 181-186.
Reimer, D. L.; Bailley, J.; Singh, S. M. Complete cDNA and 5’ genomic sequences and multilevel regulation of the mouse catalase gene. Genomics 1994, 21, 325-336.
Richard, B.; Banati, J. G.; Peter, S.; Georg, W. Cytotoxicity of microglia. Glia. 1993, 7, 111-118.
Rio-Hortega, P. Microglia, in :E. Penfield (Ed.), Cytology and cellular pathology of the nervous system, Paul B. Hoeber, New Yourk, Vol.II, 1932, pp 481-534.
Roche, H.; Boge, G. Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication. Mar. Environ. Res. 1996, 41(1), 27-43.
Safford SE. Oberley TD. Urano M. St Clair DK. Suppression of fibrosarcoma metastasis by elevated expression of manganese superoxide dismutase. Cancer Research. 1994, 54(16), 4261-5.
San, A. Y.; Chen, Y. M. Oxidative stress and neurodegenerative disorders. J. Biomed. Sci. 1998, 5, 401-414.
Sandy, M. S.; Moldeus, P.; Ross, D.; Smith, M. T. Role of redox cycling and lipid peroxidation in bipyridyl herbicide cytotxicity. Studies with a compromised isolated hepatocyte model system. Biochem. Pharmacol. 1986, 35, 3095-3101.
Schinina, M. E.; Carlini, P.; Polticelli, F.; Zappacosta, F.; Bossa, F.; Calabrese, L. Amino acid sequence of chicken Cu,Zn-containing superoxide dismutase and identification of glutathionyl adducts at exposed cysteine residues. Euro. J. Biochem. 1996, 237(2), 433-439.
Schreck, R.; Rieber, P.; Baeuerle, P. A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 1991, 10(8), 2247-58.
Schroeder, W.A.; Shelton, J.R.; Shelton, J.B.; Robberson, B.; Apell, G.; Fang, R.S.; Bonaventura, J. The complete amino acid sequence of bovine liver catalase and the partial sequence of bovine erythrocyte catalase. Arch. Biochem. Biophys. 1982, 214, 397-421.
Shaffer, J. B.; Preston, K. E.; Shepard, B. A. Nucleotide and deduced amino acid sequences of mouse catalase: molecular analysis of a low activity mutant. Nucleic Acid Res. 1990, 18(16), 4941.
Simic, M. G. Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis. Mutat. Res. 1988, 202, 377-386.
Simonian, N. A.; Coyle, J. T. Oxidative stress in neurodegenerative disease. Annu. Rev. Pharmacol. Toxicol. 1996, 36, 83-106.
Smith, C. D.; Pettigrew, L. C.; Avison, M. J.; Kirsch, J. E.; Tinkhtman, A. J.; Schmitt, F. A.; Wermeling, D. P.; Wekstein, D. R.; Markesberry, W. R. Frontal lobe phosphorus metabolism and neuropsychological function in aging and in Alzheimer''s disease. Ann. Neurol. 1995, 38(2), 194-201.
Smith, P.; Heath, D. Paraquat. Crit. Rev. Toxicol. 1976, 4, 411-445.
Speranza, M. J.; Bagley, A. C.; Lynch, R. E. Cells enriched for catalase are sensitized to the toxicities of bleomycin, adriamycin, and paraquat. J. Biol. Chem. 1993, 268(25), 19039-43.
St. Dimitrova, M.; Tishinova, V.; Velcheva, V. Combined effect of zinc and lead on the hepatic superoxide dismutase-catalase system in carp (Cyprinus carpio). Comp. Biochem. Physiol. 1994, 108C, 43-46.
Stadtman, E. R. Protein oxidation and aging. Science 1992, 257, 1220-1224.
Stadtman, E. R.; Oliver, C. N. Metal-catalyzed oxidation of proteins. Physiological consequences. J. Biol. Chem. 1991, 266, 2005-2008.
Stamler, J. S.; Singel, D. J.; Loscalzo, J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992, 258(18), 1898-1902.
Steinman, H. M.; Naik, U. R.; Aberenthy, J. L. and Hill, R. A. Bovine erythrocyte superoxide dismutase. Complete amino acid sequence. J. Biol. Chem. 1974, 249, 7326-38.
Sun, A. Y.; Chen, Y. M. Oxidative stress and neurodegenerative disorders. J. Biomed. Sci. 1998, 5(6), 401-14.
Tainer, J. A.; Getzoff, E. D.; Beem, K. M. and Richardson, D. Structure and mechanism of copper, zinc superoxide dismutase. Nature. 1983, 306, 284-286.
Tainer, J.A.; Getzoff, E.D.; Beem, K.M.; Richardson, J.S.; Richardson, D.C. Determination and analysis of the 2 A structure and mechanism of copper/zinc superoxide dismutase. J. Mol. Biol. 1982, 160, 181-217.
Takatsu, H.; Tasaki, H.; Kim, H. N.; Ueda, S.; Tsutsui, M.; Yamashita, K.; Toyokawa, T.; Morimoto, Y.; Nakashima, Y.; Adachi, T. Overexpression of EC-SOD suppresses endothelial-cell-mediated LDL oxidation. Biochem. Bioph. Res. Co. 2001, 285(1), 84-91.
Trent, J. M.; Stanbridge, E. J.; McBride, H. L.; Meese, E. U.; Casey, G.; Araujo, D. E.; Witkowski, C. M.; Nagle, R. B. Tumorigenicity in human melanoma cell lines controlled by introduction of human chromosome 6. Science. 1990, 247(4942), 568-71.
Vig, E.; Nemcsok, J. The effects of hypoxia and paraquat on the superoxide dismutase activity in different organs of carp, Cyprinus carpio L. J. Fish Biol. 1989, 35, 23-25.
Vinikour, W. S.; Goldstein, R. M.; Anderson, R. V. Bioconcentration patterns of zinc, copper, cadmium and lead in selected fish species from the Fox river. Illinois. Bull. Envir. Contam. Toxic. 1980, 24, 727-734.
Warner, H. R. Superoxide dismutase, aging and degenerative disease. Free radical Bio. Med. 1994, 17, 249-258.
Washburn, P. C.; Di Giulio, R. T. Nitrofurantoin-stimulated superoxide production by channel catfish (Ictalurus punctatus) hepatic microsomal and soluble fractions. Toxicol. Appl. Pharm. 1988, 95(3), 363-77.
Wayne, L.G.; Diaz, G.A. A double staining method for differentiating between two classes of mycobacterial catalase in polyacrylamide electrophoresis gels. Anal. Biochem. 1986, 157, 89-92.
Wdzieczak, J.; Zalesna, G.; Wujec, A.; Peres, G. Comparative studies on superoxide dismutase, catalase and peroxidase levels in erthrocytes and livers of different freshwater and marine fish species. Comp. Biochem. Physiol. 1982, 73B, 361-365.
William, R. and Markesbery, M.D. The role of oxidative stress in Alzheimer’ disease. Arch.Neurol. 1999, 56, 1449-1452.
Witas, H.; Gabryelak, T.; Matkovics, B. Comparative studies on superoxide dismutase and catalase in livers of fish and other Antarctic vertebrates. Comp. Biochem. Physiol. 1984, 77C, 409-411.
Wu, S. M.; Hwang, P. P.; Hew, C. L.; Wu, J.L. Effect of antifreeze protein on cold tolerance in juveniles of tilapia (Oreochromis mossambicus Peters) and milkfish (Chanos chanos Forsskal). Zool. Stud. 1998, 37, 39-44.
Yan, T.; Larry, W. O.; Weixiong, Z. and K. St. C. Daret. Manganese-containing superoxide dismutase overexpression causes phenotypic reversion in SV40-transfomed human lung fibroblasts. Cancer. Res. 1996, 56, 2864-2871.
Yoo, H.Y.; Kim, S.S.; Rho, H.M. Overexpression and simple purification of human superoxide dismutase (SOD1) in yeast and its resistance to oxidative stress. J Biotechnol. 1999, 68, 29-35.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top