跳到主要內容

臺灣博碩士論文加值系統

(3.238.252.196) 您好!臺灣時間:2022/08/13 23:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林鼎晏
研究生(外文):Ding-Yen Lin
論文名稱:Daxx蛋白質調控基因轉錄機制之探討
論文名稱(外文):Functional Analysis of Daxx protein in Transcriptional Regulation
指導教授:施修明
指導教授(外文):Hsiu-Ming Shih
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:1
中文關鍵詞:人類雄性激素受體
外文關鍵詞:Androgen Receptor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
Daxx蛋白質最初被證明在細胞質內與Fas受體 (receptor) 的凋亡區段(death domain)互相結合, 並被認為可能扮演訊息傳遞中轉接子(adaptor)的角色。然而卻有不少實驗證明, Daxx蛋白質主要在細胞核內執行基因轉錄調節的功能。為了更進一步了解其基因調節的角色, 本實驗利用Yeast two-hybrid 篩選法, 發現SUMO-1 , Ubc9 以及ARIP3/PIASxa為其結合蛋白; 這些分子之前即被報導為雄性賀爾蒙激素受體蛋白(Androgen receptor; AR)的轉錄調節因子。此結果暗示, Daxx蛋白質可能直接調節AR的轉錄能力。進一步証明Daxx蛋白質能與AR的N-端轉錄區段(transactivation domain)以及DNA結合區段(DNA binding domain)互相結合。利用報告質體分析(reporter assay)發現, Daxx蛋白能夠抑制AR的轉錄能力, 並且由膠體停滯法(gel retardation assay)証明Daxx蛋白可抑制AR的DNA結合能力。進一步將AR之N端的兩個SUMO-1鍵結位置作突變(K386R/K520R mutant), 發現因此失去了彼此的結合能力, 同時也使AR的轉錄能力增強, 此結果顯示SUMO-1分子作為Daxx蛋白質與AR的結合與抑制其轉錄能力之橋樑。當細胞同時轉染(cotransfection) PML分子或處理As2O3, IFNa時, 由免疫螢光方法(immunofluorescence)發現Daxx蛋白質的位置由細胞核轉變為濃縮在PML核體 (PML Nuclear Bodies ; PODs)內, 而此時Daxx蛋白質也失去了抑制AR的轉錄能力; 若同時轉染PML分子的SUMO-1鍵結突變體(PML-DSUMO), 則不能改變Daxx蛋白質在細胞核的位置, 同時也不影響其抑制AR的轉錄能力。本研究另一方面也發現核仁蛋白MSP58(58-kDa microspherules protein)為Daxx蛋白質的另一結合分子, MSP58也可藉由改變Daxx蛋白質從細胞核到核仁的位置, 進一步影響Daxx蛋白質抑制基因轉錄的能力。綜合以上結果, 本研究提供了一種調節Daxx蛋白質功能的模式, Daxx蛋白質可藉由與PML分子或MSP58分子結合後, 改變其細胞核的位置, 分別到PML核體或核仁, 因此而影響Daxx蛋白質調節下游基因的表現。

Summary
Daxx was originally identified as an adaptor molecule that binds to the death domain of the Fas receptors. However, several lines of evidence indicated that Daxx also plays an important role in nuclear compartment. To explore the functional role of Daxx in gene regulation, we performed a yeast two-hybrid screen with Daxx protein as bait. Several factors, including SUMO-1, Ubc9 and ARIP3/PIASxa, were identified that have been previously linked to transcriptional regulation of the androgen receptor (AR), suggesting a role for Daxx in AR function. In vitro and in vivo studies revealed that Daxx directly binds to the AR. This interaction of Daxx is to both the amino-terminal and DNA binding domain (DBD) of the AR. Overexpression of Daxx suppressed AR-mediated promoter activity. This suppression is partly due to the inhibition of AR DNA binding activity. Mutation of SUMO-1-conjugated sites in the AR amino-terminus resulted in a loss of Daxx interaction to this part of the AR and an increase in AR transcriptional activity. The Daxx repressive effect could be alleviated by treatment of As2O3 and IFNa or co-expression of wild-type PML but not a mutant PML that is defective in recruiting Daxx to the PML oncogenic domain (POD). Another important finding of the present study is that we have identified the 58-kDa microspherule protein (MSP58) as a Daxx-interacting protein and demonstrated that MSP58 regulates the transcriptional repression activity of Daxx through sequestration of Daxx to the nucleolus. Taken together, these findings delineate a network of regulatory signaling pathway that sequestration of Daxx to distinct nuclear substructures, such as PODs or nucleolus, thereby altering the Daxx-mediated transcriptional regulation of target genes.

Contents
Contens I
List of Figures II
List of Tables III
Chinese Summary 1
English Summary 2
Chapter I : General introduction 3
Chapter II : Daxx, an androgen receptor binding protein that suppresses
androgen response 14
Abstract 15
Introduction 16
Materials and Methods 22
Results 28
Discussion 38
Figure legend 45
Figures 53
Chapter III : Essential role of the 58-kDa microspherule protein in the
modulation of Daxx-dependent transcriptional repression
as revealed by nucleolar sequestration 69
Abstract 70
Introduction 71
Experimental procedures 75
Results 79
Discussion 87
Figure legend 92
Figures 97
Chapter IV : Discussion 105
References 112
I
List of Figures
Chapter II
Figure 1A. Interaction of AR with Daxx in the yeast two-hybrid system. 53
Figure 1B. Interaction of GST-Daxx with in vitro translated AR. 54
Figure 1C. Coimmunoprecipitate of transfected AR and Daxx in COS-1 cells. 55
Figure 1D. Coimmunoprecipitate of endogenous AR and Daxx in LNCaP cells. 55
Figure 2. Daxx repress AR-mediated transcription in reporter assays. 56
Figure 3. Daxx does not inflence androgen-induced translocation of AR. 57
Figure 4A. The Daxx and AR derivatives used in the interaction assay, 58
are shown schematically.
Figure 4B. Mapping the Daxx interaction domain of AR in vivo. 59
Figure 4C. Mapping the Daxx interaction domain of AR in yeast. 60
Figure 5A. Schematic representation of AR and its mutants used in the yeast 61
two-hybrid assay.
Figure 5B. Differential effects of the AR sumoylation sites on interaction with 61
Daxx in yeast.
Figure 5CD. Differential effects of the AR sumoylation sites mutation on 62
transcriptional repression by Daxx.
Figure 6. Daxx inhibits AR-DBD DNA-binding activity. 63
Figure 7AB. Transcriptional regulation of Daxx-mediated repression of AR 64
activity by PML or PML-DSUMO.
Figure 7C. Transcriptional modulation of Daxx-mediated repression on AR 66
by As2O3 and IFNa.
Figure 8. A model for sumoylation of PML modulates Daxx-mediated 68
repression of AR transcriptional activity.
Chapter III
Figure 1. Interaction of MSP58 and Daxx in yeast two-hybrid assay. 97
Figure 2. MSP58 interacts with the N-terminal of Daxx. 98
Figure 3. MSP58 binds to Daxx in vivo. 99
Figure 4. Inhibition of Daxx-mediated transcriptional repression by MSP58. 100
Figure 5. MSP58 recruits Daxx to nucleolus in a cell type specific manner. 101
Figure 6. MSP58 inhibits Daxx-mediated repression of GR transcriptional 103
activity.
Figure 7. A model for the compartmental modulation of Daxx-elicited 104
transcriptional repression.
II
List of Tables
Table 1. : Interaction of Daxx with SUMO-1, SUMO-2, Ubc9 and 52
ARIP3/PIASxa in yeast two-hybrid assay.
III

References
1. Aarnisalo, P., J. J. Palvimo, and O. A. Janne. 1998. CREB-binding protein in androgen receptor-mediated signaling. Proc Natl Acad Sci U S A 95:2122-7.
2. Adachi, M., S. Suematsu, T. Kondo, J. Ogasawara, T. Tanaka, N. Yoshida, and S. Nagata. 1995. Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver. Nat Genet 11:294-300.
3. Adachi, M., S. Suematsu, T. Suda, D. Watanabe, H. Fukuyama, J. Ogasawara, T. Tanaka, N. Yoshida, and S. Nagata. 1996. Enhanced and accelerated lymphoproliferation in Fas-null mice. Proc Natl Acad Sci U S A 93:2131-6.
4. Ayer, D. E., Q. A. Lawrence, and R. N. Eisenman. 1995. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80:767-76.
5. Bader, A. G., M. L. Schneider, K. Bister, and M. Hartl. 2001. TOJ3, a target of the v-Jun transcription factor, encodes a protein with transforming activity related to human microspherule protein 1 (MCRS1). Oncogene 20:7524-35.
6. Bell, S. P., R. M. Learned, H. M. Jantzen, and R. Tjian. 1988. Functional cooperativity between transcription factors UBF1 and SL1 mediates human ribosomal RNA synthesis. Science 241:1192-7.
7. Brinkmann, A. O., L. J. Blok, P. E. de Ruiter, P. Doesburg, K. Steketee, C. A. Berrevoets, and J. Trapman. 1999. Mechanisms of androgen receptor activation and function. J Steroid Biochem Mol Biol 69:307-13.
8. Chang, H. Y., H. Nishitoh, X. Yang, H. Ichijo, and D. Baltimore. 1998. Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science 281:1860-3.
9. Chang, H. Y., X. Yang, and D. Baltimore. 1999. Dissecting Fas signaling with an altered-specificity death-domain mutant: requirement of FADD binding for apoptosis but not Jun N-terminal kinase activation. Proc Natl Acad Sci U S A 96:1252-6.
10. Charette, S. J., H. Lambert, and J. Landry. 2001. A kinase-independent function of Ask1 in caspase-independent cell death. J Biol Chem 276:36071-4.
11. Charette, S. J., and J. Landry. 2000. The interaction of HSP27 with Daxx identifies a potential regulatory role of HSP27 in Fas-induced apoptosis. Ann N Y Acad Sci 926:126-31.
12. Charette, S. J., J. N. Lavoie, H. Lambert, and J. Landry. 2000. Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 20:7602-12.
13. Chelbi-Alix, M. K., L. Pelicano, F. Quignon, M. H. Koken, L. Venturini, M. Stadler, J. Pavlovic, L. Degos, and H. de The. 1995. Induction of the PML protein by interferons in normal and APL cells. Leukemia 9:2027-33.
14. Culig, Z., A. Hobisch, A. Hittmair, H. Peterziel, A. C. Cato, G. Bartsch, and H. Klocker. 1998. Expression, structure, and function of androgen receptor in advanced prostatic carcinoma. Prostate 35:63-70.
15. David, G., M. A. Neptune, and R. A. DePinho. 2002. SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. J Biol Chem.
16. Dedhar, S., P. S. Rennie, M. Shago, C. Y. Hagesteijn, H. Yang, J. Filmus, R. G. Hawley, N. Bruchovsky, H. Cheng, R. J. Matusik, and et al. 1994. Inhibition of nuclear hormone receptor activity by calreticulin. Nature 367:480-3.
17. Desterro, J. M., M. S. Rodriguez, and R. T. Hay. 1998. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2:233-9.
18. Desterro, J. M., M. S. Rodriguez, G. D. Kemp, and R. T. Hay. 1999. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J Biol Chem 274:10618-24.
19. Doucas, V., and R. M. Evans. 1999. Human T-cell leukemia retrovirus-Tax protein is a repressor of nuclear receptor signaling. Proc Natl Acad Sci U S A 96:2633-8.
20. Doucas, V., M. Tini, D. A. Egan, and R. M. Evans. 1999. Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling. Proc Natl Acad Sci U S A 96:2627-32.
21. Eilers, A. L., A. N. Billin, J. Liu, and D. E. Ayer. 1999. A 13-amino acid amphipathic alpha-helix is required for the functional interaction between the transcriptional repressor Mad1 and mSin3A. J Biol Chem 274:32750-6.
22. Emelyanov, A. V., C. R. Kovac, M. A. Sepulveda, and B. K. Birshtein. 2002. The interaction of Pax5 (BSAP) with Daxx can result in transcriptional activation in B cells. J Biol Chem 277:11156-64.
23. Everett, R. D., W. C. Earnshaw, A. F. Pluta, T. Sternsdorf, A. M. Ainsztein, M. Carmena, S. Ruchaud, W. L. Hsu, and A. Orr. 1999. A dynamic connection between centromeres and ND10 proteins. J Cell Sci 112 ( Pt 20):3443-54.
24. Glass, C. K., and M. G. Rosenfeld. 2000. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121-41.
25. Gongora, R., R. P. Stephan, Z. Zhang, and M. D. Cooper. 2001. An essential role for Daxx in the inhibition of B lymphopoiesis by type I interferons. Immunity 14:727-37.
26. Gross, M., B. Liu, J. Tan, F. S. French, M. Carey, and K. Shuai. 2001. Distinct effects of PIAS proteins on androgen-mediated gene activation in prostate cancer cells. Oncogene 20:3880-7.
27. Hofmann, H., S. Floss, and T. Stamminger. 2000. Covalent modification of the transactivator protein IE2-p86 of human cytomegalovirus by conjugation to the ubiquitin-homologous proteins SUMO-1 and hSMT3b. J Virol 74:2510-24.
28. Hofmann, H., H. Sindre, and T. Stamminger. 2002. Functional Interaction between the pp71 Protein of Human Cytomegalovirus and the PML-Interacting Protein Human Daxx. J Virol 76:5769-83.
29. Hollenbach, A. D., J. E. Sublett, C. J. McPherson, and G. Grosveld. 1999. The Pax3-FKHR oncoprotein is unresponsive to the Pax3-associated repressor hDaxx. Embo J 18:3702-11.
30. Ishov, A. M., A. G. Sotnikov, D. Negorev, O. V. Vladimirova, N. Neff, T. Kamitani, E. T. Yeh, J. F. Strauss, 3rd, and G. G. Maul. 1999. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol 147:221-34.
31. Janne, O. A., A. M. Moilanen, H. Poukka, N. Rouleau, U. Karvonen, N. Kotaja, M. Hakli, and J. J. Palvimo. 2000. Androgen-receptor-interacting nuclear proteins. Biochem Soc Trans 28:401-5.
32. Jantzen, H. M., A. Admon, S. P. Bell, and R. Tjian. 1990. Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature 344:830-6.
33. Jenster, G. 1999. The role of the androgen receptor in the development and progression of prostate cancer. Semin Oncol 26:407-21.
34. Jenster, G., H. A. van der Korput, C. van Vroonhoven, T. H. van der Kwast, J. Trapman, and A. O. Brinkmann. 1991. Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol Endocrinol 5:1396-404.
35. Johnson, E. S., and G. Blobel. 1999. Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J Cell Biol 147:981-94.
36. Johnson, E. S., and G. Blobel. 1997. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272:26799-802.
37. Johnson, E. S., I. Schwienhorst, R. J. Dohmen, and G. Blobel. 1997. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. Embo J 16:5509-19.
38. Junicho, A., T. Matsuda, T. Yamamoto, H. Kishi, K. Korkmaz, F. Saatcioglu, H. Fuse, and A. Muraguchi. 2000. Protein inhibitor of activated STAT3 regulates androgen receptor signaling in prostate carcinoma cells. Biochem Biophys Res Commun 278:9-13.
39. Juo, P., C. J. Kuo, J. Yuan, and J. Blenis. 1998. Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr Biol 8:1001-8.
40. Kahyo, T., T. Nishida, and H. Yasuda. 2001. Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol Cell 8:713-8.
41. Kelliher, M. A., S. Grimm, Y. Ishida, F. Kuo, B. Z. Stanger, and P. Leder. 1998. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 8:297-303.
42. Kiriakidou, M., D. A. Driscoll, J. M. Lopez-Guisa, and J. F. Strauss, 3rd. 1997. Cloning and expression of primate Daxx cDNAs and mapping of the human gene to chromosome 6p21.3 in the MHC region. DNA Cell Biol 16:1289-98.
43. Ko, Y. G., Y. S. Kang, H. Park, W. Seol, J. Kim, T. Kim, H. S. Park, E. J. Choi, and S. Kim. 2001. Apoptosis signal-regulating kinase 1 controls the proapoptotic function of death-associated protein (Daxx) in the cytoplasm. J Biol Chem 276:39103-6.
44. Kotaja, N., S. Aittomaki, O. Silvennoinen, J. J. Palvimo, and O. A. Janne. 2000. ARIP3 (androgen receptor-interacting protein 3) and other PIAS (protein inhibitor of activated STAT) proteins differ in their ability to modulate steroid receptor-dependent transcriptional activation. Mol Endocrinol 14:1986-2000.
45. Kwok, R. P., M. E. Laurance, J. R. Lundblad, P. S. Goldman, H. Shih, L. M. Connor, S. J. Marriott, and R. H. Goodman. 1996. Control of cAMP-regulated enhancers by the viral transactivator Tax through CREB and the co-activator CBP. Nature 380:642-6.
46. Langley, E., J. A. Kemppainen, and E. M. Wilson. 1998. Intermolecular NH2-/carboxyl-terminal interactions in androgen receptor dimerization revealed by mutations that cause androgen insensitivity. J Biol Chem 273:92-101.
47. Lavau, C., A. Marchio, M. Fagioli, J. Jansen, B. Falini, P. Lebon, F. Grosveld, P. P. Pandolfi, P. G. Pelicci, and A. Dejean. 1995. The acute promyelocytic leukaemia-associated PML gene is induced by interferon. Oncogene 11:871-6.
48. Lee, Y. F., C. R. Shyr, T. H. Thin, W. J. Lin, and C. Chang. 1999. Convergence of two repressors through heterodimer formation of androgen receptor and testicular orphan receptor-4: a unique signaling pathway in the steroid receptor superfamily. Proc Natl Acad Sci U S A 96:14724-9.
49. Lehembre, F., S. Muller, P. P. Pandolfi, and A. Dejean. 2001. Regulation of Pax3 transcriptional activity by SUMO-1-modified PML. Oncogene 20:1-9.
50. Li, H., C. Leo, J. Zhu, X. Wu, J. O'Neil, E. J. Park, and J. D. Chen. 2000. Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Mol Cell Biol 20:1784-96.
51. Li, R., H. Pei, D. K. Watson, and T. S. Papas. 2000. EAP1/Daxx interacts with ETS1 and represses transcriptional activation of ETS1 target genes. Oncogene 19:745-53.
52. Li, X. D., T. P. Makela, D. Guo, R. Soliymani, V. Koistinen, O. Vapalahti, A. Vaheri, and H. Lankinen. 2002. Hantavirus nucleocapsid protein interacts with the Fas-mediated apoptosis enhancer Daxx. J Gen Virol 83:759-66.
53. MacLean, H. E., G. L. Warne, and J. D. Zajac. 1997. Localization of functional domains in the androgen receptor. J Steroid Biochem Mol Biol 62:233-42.
54. Mahajan, R., C. Delphin, T. Guan, L. Gerace, and F. Melchior. 1997. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88:97-107.
55. Mattsson, K., K. Pokrovskaja, C. Kiss, G. Klein, and L. Szekely. 2001. Proteins associated with the promyelocytic leukemia gene product (PML)-containing nuclear body move to the nucleolus upon inhibition of proteasome-dependent protein degradation. Proc Natl Acad Sci U S A 98:1012-7.
56. Matunis, M. J., J. Wu, and G. Blobel. 1998. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J Cell Biol 140:499-509.
57. Maul, G. G., D. Negorev, P. Bell, and A. M. Ishov. 2000. Review: properties and assembly mechanisms of ND10, PML bodies, or PODs. J Struct Biol 129:278-87.
58. Michaelson, J. S. 2000. The Daxx enigma. Apoptosis 5:217-20.
59. Michaelson, J. S., D. Bader, F. Kuo, C. Kozak, and P. Leder. 1999. Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development. Genes Dev 13:1918-23.
60. Minty, A., X. Dumont, M. Kaghad, and D. Caput. 2000. Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem 275:36316-23.
61. Mitchell, P. J., and R. Tjian. 1989. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371-8.
62. Moilanen, A. M., U. Karvonen, H. Poukka, W. Yan, J. Toppari, O. A. Janne, and J. J. Palvimo. 1999. A testis-specific androgen receptor coregulator that belongs to a novel family of nuclear proteins. J Biol Chem 274:3700-4.
63. Muller, S., C. Hoege, G. Pyrowolakis, and S. Jentsch. 2001. SUMO, ubiquitin's mysterious cousin. Nat Rev Mol Cell Biol 2:202-10.
64. Muller, S., M. J. Matunis, and A. Dejean. 1998. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. Embo J 17:61-70.
65. Murtha, P. E., W. Zhu, J. Zhang, S. Zhang, and C. Y. Young. 1997. Effects of Ca++ mobilization on expression of androgen-regulated genes: interference with androgen receptor-mediated transactivation by AP-I proteins. Prostate 33:264-70.
66. Negorev, D., and G. G. Maul. 2001. Cellular proteins localized at and interacting within ND10/PML nuclear bodies/PODs suggest functions of a nuclear depot. Oncogene 20:7234-42.
67. Okuma, T., R. Honda, G. Ichikawa, N. Tsumagari, and H. Yasuda. 1999. In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochem Biophys Res Commun 254:693-8.
68. Palvimo, J. J., P. Reinikainen, T. Ikonen, P. J. Kallio, A. Moilanen, and O. A. Janne. 1996. Mutual transcriptional interference between RelA and androgen receptor. J Biol Chem 271:24151-6.
69. Perlman, R., W. P. Schiemann, M. W. Brooks, H. F. Lodish, and R. A. Weinberg. 2001. TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol 3:708-14.
70. Pluta, A. F., and W. C. Earnshaw. 1996. Specific interaction between human kinetochore protein CENP-C and a nucleolar transcriptional regulator. J Biol Chem 271:18767-74.
71. Pluta, A. F., W. C. Earnshaw, and I. G. Goldberg. 1998. Interphase-specific association of intrinsic centromere protein CENP-C with HDaxx, a death domain-binding protein implicated in Fas-mediated cell death. J Cell Sci 111 ( Pt 14):2029-41.
72. Poukka, H., P. Aarnisalo, U. Karvonen, J. J. Palvimo, and O. A. Janne. 1999. Ubc9 interacts with the androgen receptor and activates receptor-dependent transcription. J Biol Chem 274:19441-6.
73. Poukka, H., U. Karvonen, O. A. Janne, and J. J. Palvimo. 2000. Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci U S A 97:14145-50.
74. Quigley, C. A., A. De Bellis, K. B. Marschke, M. K. el-Awady, E. M. Wilson, and F. S. French. 1995. Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev 16:271-321.
75. Reeder, R. H. 1990. rRNA synthesis in the nucleolus. Trends Genet 6:390-5.
76. Ren, Y., R. K. Busch, L. Perlaky, and H. Busch. 1998. The 58-kDa microspherule protein (MSP58), a nucleolar protein, interacts with nucleolar protein p120. Eur J Biochem 253:734-42.
77. Rendon, M. C., J. Bolivar, M. Ortiz, and M. M. Valdivia. 1994. Immunodetection of the ribosomal transcription factor UBF at the nucleolus organizer regions of fish cells. Cell Struct Funct 19:153-8.
78. Roussel, P., C. Andre, C. Masson, G. Geraud, and D. Hernandez-Verdun. 1993. Localization of the RNA polymerase I transcription factor hUBF during the cell cycle. J Cell Sci 104 ( Pt 2):327-37.
79. Ryu, S. W., S. K. Chae, and E. Kim. 2000. Interaction of Daxx, a Fas binding protein, with sentrin and Ubc9. Biochem Biophys Res Commun 279:6-10.
80. Sachdev, S., L. Bruhn, H. Sieber, A. Pichler, F. Melchior, and R. Grosschedl. 2001. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 15:3088-103.
81. Sadi, M. V., P. C. Walsh, and E. R. Barrack. 1991. Immunohistochemical study of androgen receptors in metastatic prostate cancer. Comparison of receptor content and response to hormonal therapy. Cancer 67:3057-64.
82. Sanchez, E. R., L. E. Faber, W. J. Henzel, and W. B. Pratt. 1990. The 56-59-kilodalton protein identified in untransformed steroid receptor complexes is a unique protein that exists in cytosol in a complex with both the 70- and 90-kilodalton heat shock proteins. Biochemistry 29:5145-52.
83. Sato, N., M. D. Sadar, N. Bruchovsky, F. Saatcioglu, P. S. Rennie, S. Sato, P. H. Lange, and M. E. Gleave. 1997. Androgenic induction of prostate-specific antigen gene is repressed by protein-protein interaction between the androgen receptor and AP-1/c-Jun in the human prostate cancer cell line LNCaP. J Biol Chem 272:17485-94.
84. Schowalter, D. B., W. P. Sullivan, N. J. Maihle, A. D. Dobson, O. M. Conneely, B. W. O'Malley, and D. O. Toft. 1991. Characterization of progesterone receptor binding to the 90- and 70-kDa heat shock proteins. J Biol Chem 266:21165-73.
85. Schul, W., L. de Jong, and R. van Driel. 1998. Nuclear neighbours: the spatial and functional organization of genes and nuclear domains. J Cell Biochem 70:159-71.
86. Schwarz, S. E., K. Matuschewski, D. Liakopoulos, M. Scheffner, and S. Jentsch. 1998. The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme. Proc Natl Acad Sci U S A 95:560-4.
87. Seeler, J. S., and A. Dejean. 2001. SUMO: of branched proteins and nuclear bodies. Oncogene 20:7243-9.
88. Sharma, M., M. Zarnegar, X. Li, B. Lim, and Z. Sun. 2000. Androgen receptor interacts with a novel MYST protein, HBO1. J Biol Chem 275:35200-8.
89. Shenk, J. L., C. J. Fisher, S. Y. Chen, X. F. Zhou, K. Tillman, and L. Shemshedini. 2001. p53 represses androgen-induced transactivation of prostate-specific antigen by disrupting hAR amino- to carboxyl-terminal interaction. J Biol Chem 276:38472-9.
90. Sollner-Webb, B., L. Pape, K. Ryan, E. B. Mougey, R. Poretta, E. Nikolov, M. H. Paalman, I. Lazdins, and C. Martin. 1991. Expression of mouse and frog rRNA genes: transcription and processing. Mol Cell Biochem 104:149-54.
91. Stein, G. S., A. J. van Wijnen, J. L. Stein, J. B. Lian, M. Montecino, K. Zaidi, and A. Javed. 2000. Subnuclear organization and trafficking of regulatory proteins: implications for biological control and cancer. J Cell Biochem Suppl 35:84-92.
92. Sternsdorf, T., K. Jensen, B. Reich, and H. Will. 1999. The nuclear dot protein sp100, characterization of domains necessary for dimerization, subcellular localization, and modification by small ubiquitin-like modifiers. J Biol Chem 274:12555-66.
93. Sternsdorf, T., K. Jensen, and H. Will. 1997. Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1. J Cell Biol 139:1621-34.
94. Takahashi, Y., A. Toh-e, and Y. Kikuchi. 2001. A novel factor required for the SUMO1/Smt3 conjugation of yeast septins. Gene 275:223-31.
95. Tan, J., S. H. Hall, K. G. Hamil, G. Grossman, P. Petrusz, J. Liao, K. Shuai, and F. S. French. 2000. Protein inhibitor of activated STAT-1 (signal transducer and activator of transcription-1) is a nuclear receptor coregulator expressed in human testis. Mol Endocrinol 14:14-26.
96. Tilley, W. D., S. S. Lim-Tio, D. J. Horsfall, J. O. Aspinall, V. R. Marshall, and J. M. Skinner. 1994. Detection of discrete androgen receptor epitopes in prostate cancer by immunostaining: measurement by color video image analysis. Cancer Res 54:4096-102.
97. Torii, S., D. A. Egan, R. A. Evans, and J. C. Reed. 1999. Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs). Embo J 18:6037-49.
98. Vallian, S., J. A. Gaken, E. B. Gingold, T. Kouzarides, K. S. Chang, and F. Farzaneh. 1998. Modulation of Fos-mediated AP-1 transcription by the promyelocytic leukemia protein. Oncogene 16:2843-53.
99. Vannucchi, S., Z. A. Percario, M. V. Chiantore, P. Matarrese, M. K. Chelbi-Alix, M. Fagioli, P. G. Pelicci, W. Malorni, G. Fiorucci, G. Romeo, and E. Affabris. 2000. Interferon-beta induces S phase slowing via up-regulated expression of PML in squamous carcinoma cells. Oncogene 19:5041-53.
100. Varfolomeev, E. E., M. Schuchmann, V. Luria, N. Chiannilkulchai, J. S. Beckmann, I. L. Mett, D. Rebrikov, V. M. Brodianski, O. C. Kemper, O. Kollet, T. Lapidot, D. Soffer, T. Sobe, K. B. Avraham, T. Goncharov, H. Holtmann, P. Lonai, and D. Wallach. 1998. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9:267-76.
101. Veldscholte, J., C. A. Berrevoets, N. D. Zegers, T. H. van der Kwast, J. A. Grootegoed, and E. Mulder. 1992. Hormone-induced dissociation of the androgen receptor-heat-shock protein complex: use of a new monoclonal antibody to distinguish transformed from nontransformed receptors. Biochemistry 31:7422-30.
102. Vojtek, A. B., and S. M. Hollenberg. 1995. Ras-Raf interaction: two-hybrid analysis. Methods Enzymol 255:331-42.
103. Waghray, A., M. Schober, F. Feroze, F. Yao, J. Virgin, and Y. Q. Chen. 2001. Identification of differentially expressed genes by serial analysis of gene expression in human prostate cancer. Cancer Res 61:4283-6.
104. Wang, H., I. Clark, P. R. Nicholson, I. Herskowitz, and D. J. Stillman. 1990. The Saccharomyces cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphipathic helix motifs. Mol Cell Biol 10:5927-36.
105. Wang, Z. G., D. Ruggero, S. Ronchetti, S. Zhong, M. Gaboli, R. Rivi, and P. P. Pandolfi. 1998. PML is essential for multiple apoptotic pathways. Nat Genet 20:266-72.
106. Wilson, E. M., J. A. Simental, F. S. French, and M. Sar. 1991. Molecular analysis of the androgen receptor. Ann N Y Acad Sci 637:56-63.
107. Xiong, Y., H. Zhang, and D. Beach. 1993. Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev 7:1572-83.
108. Xu, L., C. K. Glass, and M. G. Rosenfeld. 1999. Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev 9:140-7.
109. Yang, X., R. Khosravi-Far, H. Y. Chang, and D. Baltimore. 1997. Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 89:1067-76.
110. Yeh, S., H. C. Chang, H. Miyamoto, H. Takatera, M. Rahman, H. Y. Kang, T. H. Thin, H. K. Lin, and C. Chang. 1999. Differential induction of the androgen receptor transcriptional activity by selective androgen receptor coactivators. Keio J Med 48:87-92.
111. Yeh, W. C., J. L. Pompa, M. E. McCurrach, H. B. Shu, A. J. Elia, A. Shahinian, M. Ng, A. Wakeham, W. Khoo, K. Mitchell, W. S. El-Deiry, S. W. Lowe, D. V. Goeddel, and T. W. Mak. 1998. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279:1954-8.
112. Yu, X., P. Li, R. G. Roeder, and Z. Wang. 2001. Inhibition of androgen receptor-mediated transcription by amino-terminal enhancer of split. Mol Cell Biol 21:4614-25.
113. Zhang, J., D. Cado, A. Chen, N. H. Kabra, and A. Winoto. 1998. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392:296-300.
114. Zhong, S., L. Delva, C. Rachez, C. Cenciarelli, D. Gandini, H. Zhang, S. Kalantry, L. P. Freedman, and P. P. Pandolfi. 1999. A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARalpha and T18 oncoproteins. Nat Genet 23:287-95.
115. Zhong, S., S. Muller, S. Ronchetti, P. S. Freemont, A. Dejean, and P. P. Pandolfi. 2000. Role of SUMO-1-modified PML in nuclear body formation. Blood 95:2748-52.
116. Zhong, S., P. Salomoni, and P. P. Pandolfi. 2000. The transcriptional role of PML and the nuclear body. Nat Cell Biol 2:E85-90.
117. Zhong, S., P. Salomoni, S. Ronchetti, A. Guo, D. Ruggero, and P. P. Pandolfi. 2000. Promyelocytic leukemia protein (PML) and Daxx participate in a novel nuclear pathway for apoptosis. J Exp Med 191:631-40.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文