|
Baggetto, L. G. Deviant energetic metabolism of glycolytic cancer cells. Biochimie. 74, 959-74. (1992). Bhargava, G. et al. Preliminary crystallographic studies of human mitochondrial NAD(P)(+) - dependent malic enzyme. J. Struct. Biol. 127, 72-5. (1999). Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-54. (1976). Burley, S. K. & Petsko, G. A. Amino-aromatic interactions in proteins. FEBS Lett. 203, 139-43. (1986). Chang, G. G. & Hsu, R. Y. Mechanism of pigeon liver malic enzyme: kinetics, specificity, and half- site stoichiometry of the alkylation of a cysteinyl residue by the substrate-inhibitor bromopyruvate. Biochemistry 16, 311-20. (1977). Chang, G. G., Chang, T. C. & Huang, T. M. Involvement of lysine residue in the nucleotide binding of pigeon liver malic enzyme: modification with affinity label periodate-oxidized NADP. Int. J. Biochem.14, 621-7 (1982). Chang, G. G., Huang, T. M. & Chang, T. C. Reversible dissociation of the catalytically active subunits of pigeon liver malic enzyme. Biochem. J. 254, 123-30. (1988). Frank, J., Chiu, W. & Degn, L. The characterization of structural variations within a crystal field. Ultramicroscopy 26, 345-60 (1988). Frenkel, R. Allosteric characteristics of bovine heart mitochondrial malic enzyme. Biochem. Biophys. Res. Commun. 47, 931-7. (1972). Frenkel, R. Regulation and physiological functions of malic enzymes. Curr. Top Cell Regul. 9, 157-81. (1975). Hsu, R. Y., Mildvan, A. S., Chang, G. & Fung, C. Mechanism of malic enzyme from pigeon liver. Magnetic resonance and kinetic studies of the role of Mn2(+). J. Biol. Chem. 251, 6574-83. (1976). Hsu, R. Y. & Pry, R. A. Kinetic studies of the malic enzyme of pigeon liver. "Half-of-the- sites" behavior of the enzyme tetramer in catalysis and substrate inhibition. Biochemistry 19, 962-8. (1980). Hsu, R. Y. & Lardy, H. A. Pigeon liver enzyme. II. Isolation, crystallization, and some properties. J. Biol. Chem. 242, 520-526. (1967). Hsu, R. Y. Pigeon liver malic enzyme. Mol. Cell Biochem. 43, 3-26. (1982). Kelly, S. M. & Price, N. C. The application of circular dichroism to studies of protein folding and unfolding. Biochim. Biophys. Acta. 1338, 161-85. (1997). Lee, H. J. & Chang, G. G. Quaternary structure of pigeon liver malic enzyme. FEBS Lett. 277, 175-9. (1990). Loeber, G., Infante, A. A., Maurer-Fogy, I., Krystek, E. & Dworkin, M. B. Human NAD(+)-dependent mitochondrial malic enzyme. cDNA cloning, primary structure, and expression in Escherichia coli. J. Biol. Chem. 266, 3016-21. (1991). Loeber, G., Dworkin, M. B., Infante, A. & Ahorn, H. Characterization of cytosolic malic enzyme in human tumor cells. FEBS Lett. 344, 181-6. (1994). Mallick, S., Harris, B. G. & Cook, P. F. Kinetic mechanism of NAD:malic enzyme from Ascaris suum in the direction of reductive carboxylation. J. Biol. Chem. 266, 2732-8. (1991). McKeehan, W. L. Glycolysis, glutaminolysis and cell proliferation. Cell Biol. Int. Rep. 6, 635-50. (1982). Moreadith, R. W. & Lehninger, A. L. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)(+)-dependent malic enzyme. J. Biol. Chem. 259, 6215-21. (1984a). Moreadith, R. W. & Lehninger, A. L. Purification, kinetic behavior, and regulation of NAD(P) malic enzyme of tumor mitochondria. J. Biol. Chem. 259, 6222-7. (1984b). Pry, T. A. & Hsu, R. Y. Mechanism of pigeon liver malic enzyme. Reactivity of class II sulfhydryl groups as a conformational probe for the "half-of-the-sites" reactivity of the enzyme with bromopyruvate. Biochemistry 17, 4024-9. (1978). Pry, T. A. & Hsu, R. Y. Equilibrium substrate binding studies of the malic enzyme of pigeon liver. Equivalence of nucleotide sites and anticooperativity associated with the binding of L-malate to the enzyme-manganese(II)-reduced nicotinamide adenine dinucleotide phosphate ternary complex. Biochemistry 19, 951-62. (1980). Rao, G.S.J., Coleman, D.E., Kulkami, G., Goldsmith, E. J., Cook, P.F. & Harris, B. G. NAD-malic enzyme from Ascaris suum: sequence and structural studies. Protein. Pept. Lett. 7, 297-304. (2000). Reynolds, C. H., Hsu, R. Y., Matthews, B., Pry, T. A. & Dalziel, K. Transient kinetic studies of malic enzyme. A conformational change associated with substrate inhibition by malate. Arch. Biochem. Biophys. 189, 309-16. (1978). Sauer, L. A. An NAD- and NADP-dependent malic enzyme with regulatory properties in rat liver and adrenal cortex mitochondrial fractions. Biochem. Biophys. Res. Commun. 50, 524-31. (1973). Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606-19. (2000). Schuck, P., Perugini, M. A., Gonzales, N. R., Howlett, G. J. & Schubert, D. Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys. J. 82, 1096-111. (2002). Teller, J. K., Fahien, L. A. & Davis, J. W. Kinetics and regulation of hepatoma mitochondrial NAD(P)(+)- malic enzyme. J. Biol.Chem. 267, 10423-32. (1992). Xu, Y., Bhargava, G., Wu, H., Loeber, G. & Tong, L. Crystal structure of human mitochondrial NAD(P)(+)-dependent malic enzyme: a new class of oxidative decarboxylases. Structure Fold. Des. 7, R877-89. (1999). Yang, Z., Floyd, D. L., Loeber, G. & Tong, L. Structure of a closed form of human malic enzyme and implications for catalytic mechanism. Nat. Struct. Biol. 7, 251-7. (2000). Yang, Z., Charles W. Lanks, & Tong, L. Molecular mechanism for the regulation of human mitochondrial NAD(P)(+)-dependent malic enzyme by ATP and fumarate. Structure 10, 1-20. (2002a). Yang, Z. et al. Structural studies of the pigeon cytosolic NADP(+)-dependent malic enzyme. Protein Sci. 11, 332-41. (2002b).
|