跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.74) 您好!臺灣時間:2022/08/12 08:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王鵬翔
論文名稱:探討quinidine、amiodarone及DeHE對人類心臟細胞內pH值調控蛋白之影響
論文名稱(外文):Effects of Quinidine、Amiodarone and DeHE on Intracellular pH Regulators in Human Myocardium
指導教授:羅時鴻羅時鴻引用關係
指導教授(外文):Loh SH
學位類別:碩士
校院名稱:國防醫學院
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:人類心臟細胞
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
前言 (1).許多學者在不同文獻中都已報導intracellular pH(pHi)的變化對細胞功能的調節扮演著非常重要的角色,例如細胞間偶合能力,細胞膜上離子的通透性等,目前在天竺鼠的心臟細胞上已被證實有五種pHi regulators,共同維持心臟細胞pHi之恆定,包括Na+/H+ exchanger( NHE )、Na+/HCO3- symporter ( NHS )、Cl-/ HCO3- exchanger ( AE ) 、Cl-/ H+ exchanger ( CHE ) 和Lactate-/ H+ symporter ( LHS ) 。 另外也有學者報導pHi regulators在某些病理的現象也扮演很重要的角色,例如在ischemia / reperfusion injury中之NHE的調節作用,人類心臟細胞中負責排酸之pHi regulators已被研究,但目前沒有任何探討有關人類心臟排鹼之pHi regulators的文獻報導。(2).抗心律不整藥主要分四大類(class I ~ class IV),quinidine為class I的抗心律不整藥,主要是透過抑制Na+ channel 的作用來治療心律不整,amiodarone (CORDARONE)為classⅢ的抗心律不整藥,具有抑制K+ channel、Na+ channel、Ca2+ channel和adrenergic blocking 的作用,而去氫吳茱萸鹼( dehydroevodiamine;DeHE )是從傳統中藥吳茱萸分離純化出來的,也已證實具classⅢ的抗心律不整藥的特性(抑制K+ channel),但是quinidine、amiodarone和DeHE對心臟的pHi regulators之NHE的作用,目前沒有任何文獻報導。
實驗目的 本研究主要是(1).探討人類心臟組織之排鹼機轉。(2).探討常用之抗心律不整用藥(quinidine、amiodarone)和研發中之傳統中藥有效成份(DeHE)對人類心臟組織NHE之影響。
材料與方法 (1).實驗標本來源與處理:主要與三軍總醫院之心臟外科合作,於開心手術中剪下之廢棄心房組織,取出小樑肌(trabecular muscle)置於Tyrode溶液中待實驗使用。
(2).實驗溶液:實驗主要於37℃下HEPES 之Tyrode溶液(以100﹪O2飽和),或含bicaronate之Tyrode溶液 (以5﹪CO2/95﹪O2飽和)中進行。
(3).顯微螢光記錄儀(microspectrofluorimetry):
利用顯微螢光技術,以氫離子敏感之螢光染劑BCECF ( 10μM ),分別透過不同之激發光波長激發(440 ﹠490 nm),於505 nm發散波長處接收螢光強度比值R (440 /490),比對校正曲線,以表示pHi濃度變化情形。
實驗結果:(1).在HEPES溶液條件下,Cl- - free及給與DBDS可以明顯抑制主動排鹼機轉。此主動排鹼機轉為Cl--dependent,可能為CHE (68%)及AE (26%)。
(2).給與quinidine ( 3μM ~ 100μM )對NHE的活性有劑量依賴性(dose-dependently)的抑制現象,但大劑量時( 300μM )抑制作用無增加。
(3).給與amiodarone ( 30 μM ~ 300μM)會呈劑量依賴性(dose-dependently)的增加NHE的活性。
(4).給與DeHE ( 0.3μM ~ 30μM )會呈劑量依賴性(dose-dependently)的增加NHE的活性。
結論 本研究首次在人類心臟細胞中報導有類似CHE及AE之主動排鹼運輸蛋白(transporters)。另外,也發現常用抗心律不整用藥quinidine、amiodarone及研發中之中藥有效成份DeHE,均對NHE之活性有調控之作用。其中DeHE及 classⅢ之amiodarone作用相似,會增加NHE之活性,但相反的,quinidine會抑制NHE之活性。

Introduction
Intracellular pH (pHi) regulation is particularly important for cardiac cells, because changes in pHi affect not only contraction but also rhythms. Our laboratory has demonstrated previously that Na+-H+ exchanger (NHE) and Na+-HCO3- symporter (NHS) are responsible for acid extrusion in the human myocardium. However, thus far, the carriers defending intracellular alkalosis have not been characterized in the human myocardium. Amiodarone and quinidine, typical antiarrhythmic drugs, have been wildly used in clinics to protect against life-threaten cardiovascular collapse. Dehydroevodiamine alkaloid (DeHE), an active ingredient of a Chinese herbal medicine Wu-Chu-Yu (Evodiae frutus), has been claimed to be a potential novel antiarrhythmic drug with the similar effects of type III (K+-channel blocker) antiarrhythmic drugs. However, effects of these antiarrhythmic drugs on pHi regulation have not been examined yet.
Aims
The aims of our present study were, using human atrial myocardium, to
(1)investigate the transporters for acid loading.(2)explore the effects of antiarrhythmic drugs (quinidine、amiodarone and DeHE) on pHi.
Materials and Methods
Human atrial myocardiums were obtained from the hearts undergoing corrective cardiac surgery for the treatment of congenital and acquired heart diseases. The change of pHi was detected by the technique of microspectrofluorimetry with a proton sensitive, dual excitation emission fluoroprobe, BCECF.
Results
In HEPES-buffered Tyrode solution, the addition of DBDS (0.3 mM), a specific inhibitor of Cl-/OH- exchanger (CHE), and removal of [Cl-]o could inhibit 68 + 8 ﹪(n=7)and 94 + 2 % (n=4), respectively, of pHi recovery slope (measured at pHi=7.43+0.03;n=7 and pHi=7.59+0.01;n=4) following Na-acetate induced intracellular alkalosis. Quinidine(30 mM~100 mM)inhibited the activity of NHE, dose dependently. However, the inhibitory effect on NHE activity was not increased in the higher concentration(300 mM)of quinidine. Amiodarone(3 ~ 300 mM) and DeHE(0.3 ~ 30 μM)both increased NHE activity, dose dependently.
Conclusions
Our results demonstrated for the first time that, in the human atrium, (i) CHE and AE are likely the main acid loaders responsible for the acid loading mechanism; (ii) quinidine, amiodarone and DeHE all can regulate NHE activity. Amiodarone and DeHE show similar effect by increasing NHE activity, while quinidine inhibit NHE activity.

目錄
頁次
目錄--------------------------------------------------------------------------------------I
圖目錄-----------------------------------------------------------------------------------IV
中文摘要--------------------------------------------------------------------------------VI
英文摘要--------------------------------------------------------------------------------IX
第一章 序論---------------------------------------------------------------------------1
第一節 細胞內pH值恆定的重要--------------------------------------------1
壹、 主動或被動運輸細胞內氫離子-----------------------------------2
貳、 pHi regulator的證實-------------------------------------------------3
參、 排酸蛋白Na+/H+ exchanger(NHE)----------------------------4
肆、 排酸蛋白Na+/ HCO3- exchanger(NHS)-----------------------6
伍、 排鹼蛋白Cl-/HCO3- exchanger(AE)---------------------------6
陸、 排鹼蛋白Cl-/OH- exchanger(CHE)----------------------------7
第二節 pHi恆定對心臟功能的影響-------------------------------------------8
壹、 pH值與心肌收縮力--------------------------------------------------8
貳、 缺血後再灌流與pHi--------------------------------------------------8
參、 心肌缺血後再灌流與NHE-----------------------------------------10
第三節 心律不整與心律不整藥物分類--------------------------------------11
壹、 心律不整形成的機制-----------------------------------------------12
貳、 心律不整的分類-----------------------------------------------------13
參、 心律不整藥物分類--------------------------------------------------13
第四節 quinidine的藥理介紹-------------------------------------------------14
壹、 quinidine的簡介與藥理作用--------------------------------------15
貳、 quinidine藥物動力學-----------------------------------------------15
第五節 amiodarone的藥理介紹----------------------------------------------16
壹、 amiodarone的簡介與藥理作用-----------------------------------16
貳、 amiodarone的藥物動力學-----------------------------------------17
第六節 去氫吳茱萸鹼的藥理介紹-------------------------------------------18
第二章 材料與方法------------------------------------------------------------------20
第一節 藥品與溶液-------------------------------------------------------------20
第二節 實驗標本----------------------------------------------------------------21
第三節 螢光比值與細胞技術與細胞內pH值的關係--------------------22
壹、 利用螢光染劑測量pHi的原理------------------------------------22
貳、 載入螢光染劑BCECF----------------------------------------------23
參、 pHi校正----------------------------------------------------------------23
第四節 實驗裝置-----------------------------------------------------------------25
壹、 實驗裝置之架置------------------------------------------------------25
貳、 儀器原理與設備----------------------------------------------------25
第五節NH4Cl pre-pulse 技術------------------------------------------------26
第六節 Sodium acetate pre-pulse技術--------------------------------------27
第七節 統計方法---------------------------------------------------------------28
第三章 實驗結果---------------------------------------------------------------------29
第一節 人類心房細胞上排鹼蛋白之證實----------------------------------30
第二節 抗心律不整藥物quinidine對人類心臟排鹼蛋白之影響------32
第三節 抗心律不整藥物amiodarone對人類心臟排鹼蛋白之影響---33
第四節 抗心律不整藥物DeHE對人類心臟排鹼蛋白之影響----------34
第四章 討論---------------------------------------------------------------------------36
第一節 人類心臟組織的排鹼機轉-------------------------------------------36
第二節 NHE抑制劑在臨床上的可能運用---------------------------------37
第三節 quinidine對人類心臟組織排酸蛋白NHE的影響--------------39
第四節 amiodarone對人類心臟組織排酸蛋白NHE的影響-----------40
第五節 DeHE對人類心臟組織排酸蛋白NHE的影響------------------41
第五章 結論---------------------------------------------------------------------------43
第六章 參考文獻---------------------------------------------------------------------69
圖目錄
圖1 天竺鼠心室細胞調控蛋白-----------------------------------------------45
圖2 quinidine化學結構式-----------------------------------------------------46
圖3 amiodarone化學結構式--------------------------------------------------47
圖4 DeHE化學結構式---------------------------------------------------------48
圖5 螢光染劑BCECF激發光譜圖------------------------------------------49
圖6 載入螢光染劑BCECF之原理------------------------------------------50
圖7 pH值原位校正法----------------------------------------------------------51
圖8 螢光強度比值與pHi之關係圖------------------------------------------52
圖9 顯微螢光測定法-----------------------------------------------------------53
圖10 NH4Cl pre-pulse誘導細胞內酸化的原理-----------------------------54
圖11 sodium acetate pre-pulse誘導細胞內鹼化的原理--------------------55
圖12 在HEPES緩衝溶液中,細胞外無Cl-環境對人類心房細胞
排鹼能力的影響----------------------------------------------------------57
圖13 細胞外無Cl-環境對人類心房細胞排鹼能力的影響之統計圖---58
圖14 在HEPES緩衝溶液中,DBDS對人類心房細胞
排鹼能力的影響----------------------------------------------------------59
圖15 DBDS對人類心房細胞排鹼能力的影響之統計圖-----------------60
圖16 在HEPES緩衝溶液中,不同劑量quinidine對人類心房細胞NHE的影響----------------------------------------------------------------------61
圖17 不同劑量quinidine對人類心房細胞NHE的影響之統計圖-----62
圖18 高劑量quinidine對人類心房細胞NHE的影響--------------------63
圖19 在HEPES緩衝溶液中,不同劑量amiodarone對人類心房細胞NHE的影響---------------------------------------------------------------64
圖20 不同劑量amiodarone對人類心房細胞NHE的影響之統計圖--65
圖21 在HEPES緩衝溶液中,不同劑量DeHE對人類心房細胞pH值之影響----------------------------------------------------------------------66
圖22 在HEPES緩衝溶液中,不同劑量DeHE對人類心房細胞NHE的影響----------------------------------------------------------------------67
圖23 不同劑量DeHE對人類心房細胞NHE的影響之統計圖---------68
表一 抗心律不整藥依作用機轉分類----------------------------------------55
表二 抗心律不整藥依臨床症狀用藥分類----------------------------------56

Aickin, C.C. & Thomas, R.C. (1977). An investigation of the ionic mechanism of intracellular pH regulation in mouse soleus muscle fibres. Journal of Physiology 273, 295-316.
Aickin, C.C. (1994). Regulation of intracellular pH in the smooth muscle of guinea-pig ureter. Journal of Physiology 479, 317-329.
Ahn, K., Beningo, K., Olds,G. & D. Hupe (1992). The endothelin-converting enzyme from human umbilical vein is a membrane-bound metalloprotease similar to that from bovine aortic endothelial cells. Proceedings of the National Academy of Sciences of the USA 89, 8606-8610.
Alpern, R.J. (1985). Mechanism of basolateral membrane H+/OH-/HCO3- transport in the rat proximal convoluted tubule. Journal of General Physiology 86, 613-636.
Allen, D.G. & Ochard, C.H. (1987). Myocardial contractile function during ischemia and hypoxia. Circulation Research 60, 153-168.
Aronson, P.S., Sum, M.A. & Nee, J. (1983). Interaction of external H+ with the Na+-H+ exchanger in renal, microvillus membrane vesicles. Journal of Biological Chemistry 258, 161-163.
Baily, I.A., Williams, S.R., Radda, G.K. & Gadian, D.G. (1981). Activity of phosphorylase in total global ischaemia in the rat heart. Biochemical Journal 196, 171-178.
Balser, J.R., Bennett, P.B., Hondeghem, L. M. & Roden, D.M. (1991) Suppression of time-dependent and amiodarone. Circulation Research 69, 519-529.
Betz, A.L. (1983). Sodium transport in capillaries isolated from rat brain. Journal of Neurochemistry 41, 1150-1157.
Blanchard, E.M. & Solaro, R.J. (1984). Inhibition of the activation and troponin calcium binding of dog cardiac myofibrils at acidic pH. Circulation Research 68, 69-76.
Boron, W.F. & De Weer, P. (1976). Active proton transport, stimulated by CO2/HCO3-, blocked by cayanid. Nature 259, 240-241.
Boron, W.F. & Russell, J.M. (1983). Stoichiometry and ion dependencies of the intracellular pH-regulating mechanism in squid giant axons. Journal of General Physiology 81, 53-94.
Bolli, R., (1990). Mechanism of myocardial ‘Stunning’. Circulation 82, 723-735.
Bigger JT. & Tratamiento de las arritmias (1984). In: Braunwald E, ed. Tratado de cardiologia. Mexico: Interamericana, 758-817.
Cala, P.M. (1983). Cell volume regulation by Amphiuma red blood cells. The role of Ca2+ as a modulator of alkali metal/H+ exchange. Journal of General Physiology 82, 761-784.
Chadwick, C.C., Ezrin, A.M., O’Connor, B., Volberg, W. A.,. Smith. D.I., Wedge, K.J., Hill, R.J., Briggs, G.M., Pagsni, E.D., Silver, P.J. & Krafte, D.S (1993). Identification of a specific radioligand for the cardiac rapidly activating delayed rectifier K+ channel. Circulation Research 72, 707-714.
Charlier R (1970) Cardiac actions in the dog of a new antagonist of adrenergic excitation which doses not produce competitive blockade of adrenoceptors. British Journal Pharmacology 39, 668-674.
Chamber, D.E., Parks, D.A., Patterson, G., Ranjan R., McCord, J.M., Yoshida, S., Parmley, L.F. & Downey, J.M. (1985). Xanthine oxidase as a source of free radical damage in myocardial ischemia. Journal of Molecular Cell Cardiology 17, 145-152.
Curci, S., Debellis L. & Fromter, E. (1987). Evidence for rheogenic sodium bicarbonate cotransport in the basolaternal membrane of oxyntic cells of frog gastric founds. Pflugers Archives 408, 497-504.
Dart, C & Vaughan-Jones, R.D. (1992). Na+-HCO3- symport in the sheep cardiac Purkinje fiber. Journal of Physiology 451, 363-385.
De Hemptinne, A., Marrannes, R. & Vanheel, B. (1983). Influence of organic acids on intracellular pH. American Journal of Physiology 245, C178-C183.
Deitmer, J.W. & Ellis, D. (1980). Interactions between the regulation of intracellular pH and sodium activity of sheep cardiac Purkinje fibers. Journal of Physiology 304, 471-488.
Ellis, D.&Thomas, R.C. (1976). Microelectrode measurement of the intracellular pH of mammalian heart cells. Nature 262, 224-225.
Fabiato, A. & Fabiato, F. (1978). Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscle. Journal of Physiology 276, 233-255.
Fenn, W.O. & Cobb, D.M. (1934). The potassium equilibrium in muscle. Journal of General Physiology 17, 629-656.
Frelin, C., Vigen, P. & Lazdunski, M. (1983). The amiloride-sensitive Na+/H+ antiport in 3T3 fibroblasts. Journal Biological Chemistry 258, 6272-6276.
Furukama, T., Tsujimura, Y., Kitamura, K., Tanaka, H. & Habuchi, Y(1989). Time-and voltage-dependent block of the delayed K+ current by quinidine in rabbit sinoatrial and atrioventricular nodes. Journal Pharmacology. Experiment and Therapeutics 251, 756-763.
Gaskell, R.M. (1880). On the tonicity of the heart and blood vessels. Journal of Physiology 3, 48-75.
Grinstein, S., Woodside, M., Sardet, C., Pouyssegur, J., & Rotin, D(1992).
Activation of Na+/H+ antipoter during cell volume regulation. Evidence for a phosphorylation-independent mechanism. Journal of Biological Chemistry 267, 23823 - 23828.
Grossmann M, Dobrev D & Kirch W (1998). Amiodarone causes endothelium-dependent vasodilation in human hand veins in vivo. Clinical Pharmacology and Therapeytics, 64, 302-11.
Giudicelli JF & Patterson ES (1984). Antiarrhythmic drugs. In: Antonaccio M. ed. Cardiovascular pharmacology. New York: Raven Press, 329-414.
Gumina RJ, Mizumura T, Beier N, Schelling P, Schultz JJ & Gross GJ (1998). A new sodium/hydrogen exchange inhibitor, EMD85131, limits infarct size in dogs when administered before or after coronary atery occlusion. Journal of Pharmacology Experimental Therapeutics 286, 175-83.
Hill, A.V. (1995). The influence of the external medium on the internal pH of muscle. Proceedings of the Royal Society of London, series B, Biological science 144, 1-22.
Hallows, K.R., Restrepo, D., & Knaug, P.A (1994). Control of intracellular pH during regulatory volume decrease in HL-60 cells. American Journal of Physiology 56736: C1057 - C1066.
Imaizumi, Y. & Giles, W.R (1987). Quinidine induced inhibition of transient outward current in cardiac muscle. American Journal Physiology 253, H704-H708.
Jeremy, R.W., Koretsune, Y., Marban, E. & Becker, L.C (1992). Relation between glycolysis and calcium homeostasis in postischemic myocardium. Circulation Research 70, 1180 - 1190.
Johson, J.J., Epel, D. & Paul, M. (1976). Intracellular pH and activation of sea urchin eggs after fertilization. Nature 262, 661-664.
Joseph, R.h. & Raymond, L.W. (1998). Cardiac Elctrophysilogy and Antiarrhythmic Agents. In: Human pharmacology: molecular to clinical.-3rd ed. (edited by Brody, T.M., Larner, J. & Minneman, K.P.) Mosby-Year Book Publishers, St.Louis. p195-197.
Karmazyn, M. (1988). Amiloride enhances postischemic ventricular recovery: possible role of Na+/H+ exchange. American Journal Physiology 255, H608-H615.
Karmazyn, M. & Moffat, M. (1993). Role of Na+/H+ exchange in cardiac physiology and pathophysiology: mediation of myocardial reperfusion injury by the pH paradox. Cardiovascular Research 27, 915-924.
Kettenman, H. & Schlue, W.R. (1988). Intracellular pH regulation in cultured mouse oligodendrocytes. Journal of Physiology 406, 147-163.
Kurachi, Y., Nakajima, T. & Sugimoto, T (1987). Quinidine inhibition of the muscarinic receptor-activated K+ channel current in atrial cells of guinea pig. Naunyn-Schmiedeberg’s Archives of Pharmacology 335, 216-218.
Lagadic-Gossmann, D., Buckler, K.J. & Vaughan-Jones, R.D. (1992). Role of bicarbonate in pH recovery from intracellular acidosis in the guinea-pig ventricular myocyte. Journal of Physiology 458, 361-384.
Levy, S., & Azoulay, S (1994). Stories about the origin of quinquina and quinidine. Journal Cardiovascular Electrophysiology 5, 635-636.
Leem, C.H. & Vaughan-Jones, R.D. (1998). Out-of-equilibrium pH transients in the guinea-pig ventricular myocyte. Journal of Physiology 509,471-485.
Link MS, Homoud M, Foote CB, Wang PJ & Estes NAM III (1996). Antiarrhythmic drug therapy for ventricular arrhythmias: Current perspectives. Journal Cardiovascular Electrophysiology 7, 653-670.
Lin, C.I., Loh, S.H., Luk, H.N., Lue, W.M. & Chen, C.F. (1990). Electropharmacological effects of dehydroevodiamine on mammalian hearts. Journal Chinese Medicine 1, 84-93.
Loh, S.H. & Vaughan-Jones, R.D. (1996). Na+ influx during pHi regulation in the guinea-pig ventricular myocyte. Journal of Physiology 496, 59p.
Loh SH, Lee AR, Huang WH & Lin CI (1992). Ionic mechanisms responsible for the antiarrhythmic action of dehydroevodiamine in guinea-pig isolated cardiomyocytes. British Journal of Pharmacology 106, 517-23.
Lucchesi BR & Patterson ES (1984). Antiarrhythmic drugs. In: Antonaccio M. ed. Cardiovascular pharmacology. New York, Raven Press 329-414.
Meng, H.P., Maddaford, T.G. & Pierce, G.N. (1993). Effect of amiloride and selected analogues on postischemic recovery of cardiac contractile function. American Journal of Physiology 264, H1831-H1835.
Messeter, K. & Siesjo, B.K. (1971). The intracellular pH in the brain in acute and sustained hypercapnia. Acta Physiologica Scandinavica 83, 210-219.
Mitchell, J.A., G. de Nucci, T.D. Warner & J.R. Vane (1991). Alkaline buffers release EDRF from bovine cultured aortic endothelial cells. British Journal of .Pharmacology 103, 1295-1302.
Moolenaar, W.H., Tsien, R.Y., Saag, P.T. & Laat, S.W. (1983). Na+/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts. Nature 304, 645-648.
Murphy E, Perlman M, London RE & Steenbergen C (1991). Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circulation Research 68, 1250-1258.
Murer, H., Hopfer, U. & Kinne, R. (1976). Sodium/proton antiport in brush-boudoir- membrane vesicles isolated from rat small intestine and kidney. Biochemical Journal 154, 597-604.
Murry CE, Richard VJ, Reimer KA & Jennings RB (1990). Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circulation Research 66, 913-930.
Nayler W (1983). Calcium and cell death. European Heart Journal 4, (suppl C) 33-41.
Nademanee K, Singh BN, Stevenson WG & Weiss JN (1993). Amiodarone and post-MI patients. Circulation 88, 764-774.
Orchard, C.H. & Kentish, J.C. (1990). Effect of changes of pH on the contractile function of cardiac muscle. American Journal of Physiology 258, C967-C981.
Orchard, C.H. & Cingolani, H.E. (1994). Acidosis and arrhythmias in cardiac muscle. Cardiovascular Research 28, 1312-1319.
Orchard, C.H., Houser, S.R., Kort, A.A., Banhinski, A., Capogrossi, M.C. & Lakatta, E.G. (1987). Acidosis facilitates spontaneous sarcoplasmic reticulum Ca2+ release in rat myocardium. Journal of General Physiology 90, 145-465.
Pike MM, Luo CS, Clark MD, Kirk KA, Kitakaze M, Madden MC, Cragoe EJ Jr & Pohost GM (1993). NMR measurements of Na+ and cellular energy in ischemic rat heart: role of Na+-H+ exchange. American Journal Physiology 265, H2017-H2026.
Pike MM, Luo CS, Yanagida S, Hageman GR & Anderson PG (1995). 23Na.and 31P nuclear magnetic resonance studies of ischemia-induced ventricular fibrillation: alteration of intracellular Na+ and cellular energy. Circulation Research77, 394-406.
Pitts, R.F. Ayer, J.L. & Schiess, W.A. (1949). Renal regulation of acid-base balance in man; reabsorption and exertion of bicarbonate. Journal of Clinical Investigation 28, 35-44.
Pierce, G.N. & Czubryt, M.P., (1995). The contribution of ionic imbalance to ischemia/reperfusion-induced injury. Jounal of Molecular and Cellular Cardiology 27, 53-63.
Podrid PJ (1995). Amiodarone: Reevaluation of an old drug. Annals of Internal Medicine 122, 689-700.
Polster P & Broekhuysen J (1976). The adrenergic antagonism of amiodarone. Biochemical Pharmacology 25, 131-136.
Poole, R.C. & Halestrap, A.P. (1993). Transport of lactate and other monocarboxylates across mammalian plasma membranes. American Journal of Physiology 264, C761-C782.
Roos, A. & Boron WF. (1981) Intracellular pH. Physiological Reviews. 61, 296-434.
Roden, D.M. (1991). Long QT syndrome and torsades de pointes: basic and clinical aspects. In, Cardiac Pacing and Electrophysiology. (E1-Sherif, N., and Samet, P., eds.)W.B. Saunders, Philadelphia pp.265-284.
Roden, D.M. (2002). Antiarrhythmic Drugs. In: Goodman&Gilman’s The Pharmacological Basis of Therapeutics.-9th ed. (edited by Hardman J.G., Limbird L.E.) McGraw-Hill Publishers, New York. p858-859;869-871
Rub, V., Balser, C., Scholz, W., Albus, U., Lang, H.J., Wiechert, A., Scholken, B.A. & Gogelein, H. (1996). Effects of the Na+-H+ exchange inhibitor HOE 642 on intracellular pH, calcium and sodium in isolated rat ventricular myocytes. European Journal of Physiology 433, 26-34.
Salata, J.J. & Wasserstrom, J.A (1988). Effects of quinidine on action potentials and ionic currents in isolated canine ventricular myocytes. Circulation Research 62, 324-337.
Salvator, C., Claudio, C., Federica, D.G., Anna, F.P., Bruno, M., Marinella, C., Alessandro, P., Paolo, M., Ottavio, A., Frank, M. & Roberto, F. (1995). Oxidative stress during reperfusion of human hearts. Cardiovascular Research 29, 118-125.
Scholz, W., Albus, U., Counillon, L., Gogelein, H.J., Linz, W., Weichert, A. & Scholkenes, B.A. (1995). Protect effect of HOE 642, a selective sodium-hydrogen exchange subtype I inhibitor, in cardiac ischaemia and reperfusion. Cardiovascular Research 29, 260-268.
Scholz, W., Albus, U., Lang, H.J. Martorana, P.A., Englert, H.C. & Scholkens, B.A. (1993). HOE 694, a new Na+/H+ exchanger inhibitor and its effects in cardiac ischaemia. British Journal of Pharmacology 109, 562-568.
Shivkumar K, Deutsch NA, Lamp ST, Khuu K, Goldhaber JI & Weiss JN (1997). Mechanism of hypoxic K loss in rabbit ventricle. Journal Clinical Invertigation 82, 920-927.
Schaefer S, Ramasamy R (1997). Short-term inhibition of the Na-H exchanger limits acidosis and reduces ischemic injury in the rat heart. Cardiovascular Research 34, 329-36.
Siffert, W. & J.W.Akkerman (1989). Na+/H+ exchange and Ca2+ influx. FEBS Letters 259:1-4.
Singh BN (1983). Amiodarone: Historical development and pharmacologic profile. American Heart Journal 106, 788-797.
Silverman HS & Stern MD (1994). Ionic basis of ischaemic cardiac injury: insights from cellular studies. Cardiovascular Research 28, 581-97.
Singh BN (1995). Expanding indications for the use of Class III agents in patients at high risk for sudden death. Journal of Cardiovascular Electrophysiol 6, 887-900.
Steenbergen C, Perlman M, London RE & Murphy E (1993). Mechanism of preconditioning: ionic alterations. Circulation Research 72, 112-125.
Sun, B., Leem, C.H. & Vaughan-Jones, R.D. (1996). Novel chloride-dependent acid loader in the guinea-pig ventricular myocyte: part of a dual acid-loading mechanism. Journal of Physiology 495, 65-82.
Tani M (1990). Mechanism of Ca2+ overload in reperfused ischemic myocardium. Annu Reveiw Physiology 52, 543-559.
Tani M & Neely JR (1989). Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts: possible involvement of H+-Na+ and Na+-Ca2+ exchange. Circulation Research 65, 1045-1056.
Thomas, R.C. (1972). Electrogenic sodium pump in nerve and muscle cells. Physiological Reviews 52, 563.
Thomas, R.C. (1974). Intercellular pH of snail neurons measured with a new pH-sensitive glass microelectrode. Journal of Physiology 238, 159-180.
Thuringer, D., A. Diarra, & R. Sauve (1991). Modulation by extracellular pH of bradykinin-evoked activation of Ca2+-activated K+ channels in endothelial cells. American Journal Physiology 261(Heart Circulation Physiology 30):H656-H666.
Trivedi, B.&Danforth, W.H. (1966). Effect of pH on the kinetics of frog muscle phosphofructokinase. Journal of Biological Chemistry 241,4110-4112.
Undrovinas, A.I. Burnashev, N., Eroshenko, D., Fleidervish, I., Starmer, C.F. & Makieliski, J.C (1990). Quinidine blocks adenosine 5’-triphosphate-sensitive potassium channels in heart. American Journal Physiology 259, H1609-H1612.
Van Emous JG, Nederhoff MGJ, Ruigrok TJC & Van Echteld CJA (1997). The role of the Na+ channel in the accumulation of intracellular Na+ during myocardial ischemia: consequences for post-ischemic recovery. Journal of Molecular Cellular Cardioloy 29, 85-96
Vanghan-Jones, R.D. (1979a). Non-passive chloride distribution in mammalian heart muscle: micro-electrode measurement of the intracellular chloride activity. Journal of Physiology 295, 83-109.
Vanghan-Jones, R.D. (1979b).Regulation of chloride in quiescent sheep heart Purkinje fibers studied using intracellular chloride and pH-sensitive microelectrodes. Journal of Physiology 295, 111-137.
Vanghan-Jones, R.D. (1981). Ammonia stimulates chloride-bicarbonate exchange in sheep cardiac Purkinje fibers. Journal of Physiology 320, 33p.
Vanghan-Jones, R.D. (1982). Chloride-bicarbinate exchange in the sheep cardiac Purkinje fibre. In:. Intracellular pH: its measurement, regulation and utilzation in cellular functions. (edited by Nuccitelli R&Deamer D.)Alan R Liss, New York p239-252.
Vanghan-Jones, R.D. (1986). An investigation of chloride-bicarbonate exchange in the sheep cardiac Purkinje fibre. Journal of Physiology 379, 377-406.
Vanghan-Jones, R.D., Eisner, D.A., & Lederer, W.J. (1987). Effects of changes of intracellular pH on contraction on sheep cardiac Purkinje fibres. Journal of General Physiology 89, 1015-1032.
Vanghan-Jones, R.D. (1988). Regulation of intracellular pH in cardiac muscle. In: Pronton Passage aross Cell Membranes. Ciba Foundation Symposium, vol. 139, (edited by Bock, G.&Marsh, J.) Wiley, Chichester, p.23-46
Velebit V, Podrid P, Lown B, Cohen BH & Graboys TB (1982). Aggravation and provocation of ventricular arrhythmias by antiarrhythmic drugs. Circulation 65, 886-94.
Wang, Q., Shen, J., Splawski, I., Atkinson, D., Li, Z., Robinson, J.L., Moss, A.J., Towbin, JA. & Keating, M.T. (1995). SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80, 805-811.
Wenckebach, K.F(1923) . Cinchona derivates in the treatment of heart disorders . JAMA 81:472-474.
Wu, M.L., Tasi, K.L., Wang, S.M., Wu, J.C. Wang, B.S. & Lee, Y.T. (1996). Mechanism of hydrogen peroxide and hydroxyl free radical induced intracellular acidification in culture rat cardiac myoblasts. Circulation Research, 564-572.
Wu M.L. & Vaughan-Jones R.D. (1997). Interaction between Na+ and H+ ions on Na-H exchange in Sheep Cardiac Purkinje fibers. Journal of Molecular and Cellular cardiology 29(4), 1131-40.
Yang, H.Y., S.Y. Li & C.F. Chen, (1988). Hypotensive effects of dehydroevodiamine, a quinazolinocarboline alkaloid isolated from Evodiae rutaecarpa, Asia Pac. J. Pharmacol. 3, 191.
Yang M.C.M., Wu, S.L., Kuo, J.S. & Chen, C.F. (1990). The hypotensive and negative chronotropic effects of dehydroevodiamine. European Journal of Pharmacology 182, 537-542.
Yoshitomi, K., Burkhardt, B.C.H. & Fromter, E. (1985). Rheogenic sodium-bicarbonate cotransport in the peritubular cell membrane of rat renal of proximal tubule. Pflugers Archives 405, 360-366.
Ziegelstein, R. C., L. Cheng, P.S. Blank, H.A. Spurgeon, E.G. Lakatta, R.G. Hansford, & M.C. Capogrossi (1993). Modulation of calcium homeostasis in cultured rat aortic endothelial cells by intracellular acidification. American Journal Physiology (Heart Circulation Physiology34), H1424-H1433.
楊春茂等人譯 (1998)。人體藥理學,藝軒出版社,台北,185-188頁。
葉嘉新 (1999)。 作用於心臟血管系統的藥物 最新實用藥理學(李安榮教授等著),永大書局,台北,258-264頁。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文