跳到主要內容

臺灣博碩士論文加值系統

(35.168.110.128) 您好!臺灣時間:2022/08/16 05:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡明霖
研究生(外文):Ming-Ling Tsai
論文名稱:以重組腺相關病毒載體進行眼科疾病基因治療之研究
論文名稱(外文):The Therapeutic Application of Ocular Disease with Recombinant Adeno-Associated Virus Vector
指導教授:陳小梨陳小梨引用關係周秉義文良彥文良彥引用關係
學位類別:博士
校院名稱:國防醫學院
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:197
中文關鍵詞:重組腺相關病毒基因治療角膜內皮細胞載體
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本計劃研究目的在探討以基因治療方法治療眼部疾病的可行性.
基因治療是目前發展極為快速的學門,所謂的基因治療就是用適當的載體將適當的治療性基因轉殖到標的細胞,以製造預期的基因產物( 如蛋白質或RNA ) ,來治療遺傳性或後天性的疾病。相對的,我們也可以用適當的載體將適當的治療性基因轉殖到眼部細胞,以製造治療性的基因產物,來治療許多眼部的遺傳性或後天性疾病。除此之外,由於眼球本身位於人體表面易於觀察與操作,更由於眼球組織本身所具有的免疫特權(immunologic privilege)不易排斥外來物質,因此使得以基因療法治療眼部疾病的可行性深具潛力。
而在能夠將外來基因輸送至宿主細胞內所使用的各種載體(Vectors)之中,重組腺相關病毒載體( Recombinant adeno-associated virus vector ; rAAV vector )被公認為是相當安全,具備高輸送率( Transduction rate ) ,又能夠將外來基因嵌入宿主染色體固定位置導致長期表現的病毒載體。因此在本計劃中,我們選擇重組腺相關病毒載體來作為眼部疾病基因治療的基因傳送工具。
為探討以重組腺相關病毒載體對眼部疾病進行基因治療的可行性,我們的研究分成兩個部份,我們分別將重組腺相關病毒載體打入眼前房與眼後房來評估重組腺相關病毒載體轉殖基因在眼球組織的的表現。在了解重組腺相關病毒載體轉殖基因在眼球組織的的表現特性後,我們將著手利用此一載體系統傳送治療性基因( Therapeutic gene ) ,來進行眼部疾病的治療與預防。
在我們的第一實驗中我們利用重組腺相關病毒載體攜帶由巨細胞病毒操縱子( CMV promoter) 所調控的標誌基因( LacZ )注射入紐西蘭兔的眼睛前房內,來評估重組腺相關病毒載體對角膜內皮細胞基因的輸送效率。但是由於曾有報告指出重組腺相關病毒載體對活體外的角膜內皮細胞傳送由CMV promoter所調控的轉殖基因表現( Transgene expression)的能力有限。重組腺相關病毒載體因此被認為對角膜內皮細胞的基因輸送效率不佳。但是我們並不如此認為,因為此一由CMV promoter所調控的轉殖基因表現並不全然代表重組腺相關病毒載體對角膜內皮細胞的基因輸送效率,因為曾有報告指出由CMV promoter 所調控的轉殖基因在不發炎的狀態下會受到抑制。因此為精確評估重組腺相關病毒載體對角膜內皮真正的基因轉殖效率,我們必須建立眼前房發炎的動物模式。我們首先利用細菌內毒素( Lipopolysaccharide )注射紐西蘭兔玻璃體腔來建立眼前房發炎的動物模式,在確立此一眼前房發炎的動物模式後,我們再來觀察重組腺相關病毒載體對角膜內皮轉殖基因在發炎與不發炎下的表現,以精確評估重組腺相關病毒載體對角膜內皮轉殖基因的真正輸送效率。我們發現重組腺相關病毒載體轉殖到角膜內皮細胞的 LacZ gene在不發炎的狀態下其表現有限,然而在發炎的狀態下其轉殖基因有明顯的表現。因此重組腺相關病毒載體攜帶由CMV promoter 所調控的轉殖基因對角膜內皮細胞是一個誘發性的基因轉移系統。
在我們的第二個實驗中,我們用重組腺相關病毒載體攜帶由CMV promoter 所調控的第一介白質受體阻斷劑 ( Interleukin-1 receptor antagonist gene; IL-1Ra gene )注射入紐西蘭兔的玻璃體腔內,以評估重組腺相關病毒載體合併第一介白質受體阻斷劑(rAAV-IL-1Ra)的這個基因製劑是否有治療萄萄膜炎的效果。因為之前的報告指出重組腺相關病毒載體在眼後節( post segment)組織細胞的轉殖基因有很好的表現效果。而且亦有報告指出第一介白質受體阻斷劑蛋白質可以有效的抑制葡萄膜炎。因此以rAAV-IL-1Ra治療萄萄膜炎是一個深具潛力的策略。在這個實驗中我們也觀察到重組腺相關病毒載體攜帶之轉殖基因能有效率地殖入眼球細胞,並可以在兔眼產生具備生物功能性的人類第一介白質受體阻斷劑,而且此一表現可持續達100天之久。這個持續表現的第一介白質阻斷劑基因可以有效的抑制葡萄膜炎達100天之久。所以基因治療合併使用rAAV-IL-1Ra是一個相當有潛力的方法來長期控制與治療葡萄膜炎。
綜上所見,我們發現重組腺相關病毒載體可以將轉殖基因很有效率的送至眼球組織的不同細胞。我們也發現重組腺相關病毒載體送到角膜內皮細胞的轉殖基因表現是可以誘發的,我們也發現重組腺相關病毒載體送到眼後房的組織的某些細胞是持續性的。因此我們正可以應用重組腺相關病毒載體攜帶由CMV promoter 所調控的治療性基因,針對各種不同的眼部疾病的特性,治療各種不同的眼部疾病,並用來預防各種不同的眼部疾病。
Gene therapy is a potential scientific discipline that has already had a profound impact on biomedical science, including basic and clinical eye research. Introduction of therapeutic DNA into various cells of ocular tissue provides a potential strategy to treat various ocular diseases. In addition, The accessibility of the eye and the tendency for some degree of immunologic privilege within the ocular tissues may favor the development of ocular gene therapy. In current time, gene therapy may not only be used to treat inherited eye disease but also be applied to modify or ameliorate acquired diseases such as retinitis pigmentosa and after-cataract. Rapid progress in understanding the molecular basis of clinical ophthalmology will advance the treatment of eye diseases, including the potential for gene therapy. In the coming years, gene therapy will increasingly influence aspects of diagnosis, prognosis, and treatment in clinical ophthalmology. Conventional treatment for both acquired and inherited diseases may be revolutionized by this molecular technology.
目錄
頁次
目錄 I
圖次目錄 III
中文總摘要 V
英文總摘要 IX
第一章.重組腺相關病毒載體轉殖基因在角膜內皮
細胞表現之研究 1
中文摘要 2
英文摘要 5
第一節 緒論 7
第二節 實驗設計及方法 27
第三節 結果 48
第四節 討論 67
第五節 結論 72
第二章. 以重組腺相關病毒載體合併第一介白質受體阻
斷劑基因進行葡萄膜炎基因治療之研究 73
中文摘要 74
英文摘要 76
第一節 緒論 78
第二節 實驗設計及方法 88
第三節 結果 96
第四節 討論 114
第五節 結論 119
第三章. 總論 120
第四章. 參考文獻 123
附錄 132
1. Anderson WF. Gene therapy for genetic diseases. Hum Gene Ther 5:281-282. 1994.
2. Reichel MB, et al. Gene transfer in ophthalmology. Ophthalmologe. 96:570-577. 1999.
3.Waring GO 3d, Bourne WM, Edelhauser HF, Kenyon KR. The corneal endothelium. Normal and pathologic structure and function. Ophthalmology. 89:531-590,1982.
4.Mishima S. Clinical investigations on the corneal endothelium. Ophthalmology. 89:525-530,1982.
5.Adamis AP, Filatov V, Tripathi BJ, Tripathi RC. Fuchs'' endothelial dystrophy of the cornea. Surv Ophthalmol. 38:149-168,1993.
6.Macdonald JM, Geroski DH, Edelhauser HF. Effect of inflammation on the corneal endothelial pump and barrier. Curr Eye Res. 6:1125-1132,1987.
7.Diaz-Valle D, Benitez del Castillo Sanchez JM, Castillo A, Sayagues O, Moriche M. Endothelial damage with cataract surgery techniques. J Cataract Refract Surg. 24:951-955,1998.
8.Freegard TJ. The physical basis of transparency of the normal cornea. Eye. 11:465-471,1997.
9.Langston RH. Prevention and management of corneal decompensation. Int Ophthalmol Clin. 22:189-201,1982.
10.Lois N, Kowal VO, Cohen EJ, Rapuano CJ, Gault JA, Raber IM, Laibson PR. Indications for penetrating keratoplasty and associated procedures, 1989-1995. Cornea.16:623-629,1997.
11.Larkin DF. Corneal allograft rejection. Br J Ophthalmol. 78:649-652,1994.
12.George AJ, Arancibia-Carcamo CV, Awad HM, et al. Gene delivery to the corneal endothelium. Am J Respir Crit Care Med. 162(4Pt2):S194-S200, 2000.
13.Hauswirth WW, Beaufrere L. Ocular gene therapy: quo vadis? Invest Ophthalmol Vis Sci. 41:2821-2826, 2000.
14.Larkin DF, Oral HB, Ring CJ, Lemoine NR, George AJ. Adenovirus-mediated gene delivery to the corneal endothelium.Transplantation. 61:363-370,1996.
15. Borras T, Tamm ER, Zigler JS Jr. Ocular adenovirus gene transfer varies in efficiency and inflammatory response. Invest Ophthalmol Vis Sci. 37:1282-1293, 1996.
16. Bueler H. Adeno-associated viral vectors for gene transfer and gene therapy. Biol Chem. 380:613-622,1999.
17. Lamartina S, Sporeno E, Fattori E, Toniatti C. Characteristics of the adeno-associated virus preintegration site in human chromosome 19: open chromatin conformation and transcription-competent environment. J Virol. 74:7671-7677, 2000.
18. Tsai TH, Chen SL, Chiang YH, Lin SZ, Ma HI, Tsao YP. Recombinant adeno-associated virus vector expressing glial cell line-derived neurotrophic factor reduces ischemia-induced damage. Exp Neurol. 166:266-275,2000.
19. Bennett J, Duan D, Engelhardt JF, Maguire AM. Real-time, noninvasive in vivo assessment of adeno-associated virus-mediated retinal transduction. Invest Ophthalmol Vis Sci. 38:2857-2863,1997.
20.Guy J, Qi X, Muzyczka N, Hauswirth WW. Reporter expression persists 1 year after adeno-associated virus-mediated gene transfer to the optic nerve. Arch Ophthalmol. 117:929-937,1999.
21. Hudde T, Rayner SA, Alwis MD, et al. Adeno-associated and herpes simplex virus as vectors for gene transfer to the corneal endothelium. Cornea. 19:369-373, 2000.
22. Pan RY, Xiao X, Chen SL, Li J, Lin LC, Wang JH, Tsao YP. Disease-inducible transgene expression from a recombinant adeno-associated virus vector in a rat arthritis model. J Virol.73:3410-3417,1999.
23. Pan RY, Chen SL, Xiao X, Liu DW, Peng HJ, Tsao YP. Therapy and prevention of arthritis by recombinant adeno-associated virus vector with delivery of interleukin-1 receptor antagonist. Arthritis Rheum. 43:289-297,2000.
24. Mo JS, Matsukawa A, Ohkawara S, Yoshinaga M. Involvement of TNF alpha, IL-1 beta and IL-1 receptor antagonist in LPS-induced rabbit uveitis. Exp Eye Res. 66:547-557,1998.
25. Xiao X, Li J, Samulski RJ. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72:2224-2232,1998.
26. Sun L, Li J, Xiao X. Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med. 6:599-602,2000.
27. Goater J, Muller R, Kollias G, Firestein GS, Sanz I, O''Keefe RJ, Schwarz EM. Empirical advantages of adeno associated viral vectors in vivo gene therapy for arthritis. J Rheumatol. 27:983-989, 2000.
28. Ferrari FK, Samulski T, Shenk T, Samulski RJ. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol. 70:3227-3234,1996.
29. Alexander IE, Russell DW, Miller AD. DNA-damaging agents greatly increase the transduction of nondividing cells by adeno-associated virus vectors. J Virol. 68:8282-8287,1994.
30. Conner EM, Grisham MB. Inflammation, free radicals, and antioxidants. Nutrition. 12:274-287,1996.
31. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA. Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med 28:1456-1462,2000.
32. Loser P, Jennings GS, Strauss M, Sandig V. Reactivation of the previously silenced cytomegalovirus major immediate-early promoter in the mouse liver: involvement of NFkappaB. J Virol. 72:180-190,1998.
33. Baskar JF, Smith PP, Nilaver G, Jupp RA, Hoffmann S, et al . The enhancer domain of the human cytomegalovirus major immediate-early promoter determines cell type-specific expression in transgenic mice. J Virol. 70:3207-3214, 1996.
34. Henkel T, Machleidt T, Alkalay I, Kronke M, Ben-Neriah Y, Baeuerle PA. Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature. 365:182-185,1993.
35. Beg AA, Finco TS, Nantermet PV, Baldwin AS Jr. Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation. Mol Cell Biol. 13:3301-3310,1993.
36. Kline JN, Hunninghake GM, He B, Monick MM, Hunninghake GW. Synergistic activation of the human cytomegalovirus major immediate early promoter by prostaglandin E2 and cytokines. Exp Lung Res. 24:3-14,1998.
37. Darrell RW, Wagener HP, Kurland LT. Epidemiology of uveitis. Arch Ophthalmol. 68:502-514,1962.
38. Rothova A, van Veenedaal WG, Linssen A, Glasius E, Kijlstra A, de Jong PT. Clinical features of acute anterior uveitis. Am J Ophthalmol. 103:137-145,1987.
39. Rodriguez A, Calonge M, Pedroza-Seres M, Akova YA, Messmer EM, D''Amico DJ, Foster CS. Referral patterns of uveitis in a tertiary eye care center. Arch Ophthalmol. 114:593-599,1996.
40. Merayo-Lloves J, Power WJ, Rodriguez A, Pedroza-Seres M, Foster CS. Secondary glaucoma in patients with uveitis. Ophthalmologica. 213:300-304, 1999.
41. Raizman M. Corticosteroid therapy of eye disease: fifty years later. Arch Ophthalmol. 114:1000-1001,1996.
42. Renfro L, Snow JS. Ocular effects of topical and systemic steroids. Dermatol Clin. 10:505-512,1992.
43. Johnson D, Gottanka J, Flugel C, Hoffmann F, Futa R, Lutjen-Drecoll E. Ultrastructural Changes in the trabecular meshwork of human eyes treated with corticosteroids. Archives of Ophthalmology.115:375-383,1997.
44. Schlotzer-Schrehardt U, Zagorski Z, Holbach LM, Hofmann-Rummelt C, Naumann GO. Corneal stromal calcification after topical steroid-phosphate therapy. Archives of Ophthalmology.117:1414-1418,1999.
45. Eisenberg SP, Evans RJ, Arend WP, Verderber E, Brewer MT, Hannum CH, Thompson RC. Primary structure and functional expression from complementary DNA of a human interleukin-1 receptor antagonist. Nature. 343:341-346,1990.
46.Keane-Myers AM, Miyazaki D, Liu G, Dekaris I, Ono S, Dana MR. Prevention of allergic eye disease by treatment with IL-1 receptor antagonist. Invest Ophthalmol Vis Sci. 40:3041-3046,1999.
47.Dana MR, Yamada J, Streilein JW. Topical interleukin 1 receptor antagonist promotes corneal transplant survival. Transplantation. 63:1501-1507,1997.
48.Rosenbaum JT, Boney RS. Activity of an interleukin 1 receptor antagonist in rabbit models of uveitis. Arch Ophthalmol.110:547-549,1992.
49.Granowitz EV, Porat R, Mier JW, Pribble JP, Stiles DM, Bloedow DC, Catalano MA, Wolff SM, Dinarello CA. Pharmacokinetics, safety and immunomodulatory effects of human recombinant interleukin-1 receptor antagonist in healthy humans. Cytokine. 4:353-360,1992.
50. Pepose JS, Leib DA. Herpes simplex viral vectors for therapeutic gene delivery to ocular tissues. Recent breakthroughs in the molecular genetics of ocular diseases. Invest Ophthalmol Vis Sci. 35:2662-2666,1994.
51. Borras T, Tamm ER, Zigler JS Jr. Ocular adenovirus gene transfer varies in efficiency and inflammatory response. Invest Ophthalmol Vis Sci. 37:1282-1293, 1996.
52. Xiao X, Li J, McCown TJ, Samulski RJ. Gene transfer by adeno-associated virus vectors into the central nervous system. Exp Neurol.144:113-124,1997.
53. Freegard TJ. The physical basis of transparency of the normal cornea. Eye.11:465-471,1997.
54. Wang B, Li J, Xiao X. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci. 97:13714-13719, 2000.
55. Bueler H. Adeno-associated viral vectors for gene transfer and gene therapy. Biol Chem. 380:613-622,1999.
56. Thompson JE, Philips RJ, Erdjument-Bromage H, Tempst P, Ghosh S. I kappa B-beta regulates the persistent response in a biphasic activation of NF-kappa B. Cell. 80: 573-582,1995.
57. Dinarello CA and Thompson RC. Blocking IL-1 : Interleukin-1 receptor
antagonist in vivo and in vitro. Immunol. Today. 12: 404-410,1991.
58. Carter DB, Deibel MR Jr, Dunn CJ, et al. Purification, cloning, expression and biological characterization of an interleukin-1 receptor antagonist protein. Nature. 344:633-638,1990.
59. Li J, Dressman D, Tsao YP, Sakamoto A, Hoffman EP, Xiao X. rAAV vector-mediated sarcogylcan gene transfer in a hamster model for limb girdle muscular dystrophy. Gene Ther. 16:74-82,1999.
60. Brito BE, et al. IL-1 and TNF receptor-deficient mice show decreased inflammation in an immune complex model of uveitis. Invest Ophthalmol Vis Sci. 40:2583-2589,1999.
61. Wilson SE, Liang Q, Kim WJ. Lacrimal gland HGF, KGF, and EGF mRNA levels increase after corneal epithelial wounding. Invest Ophthalmol Vis Sci. 40:2185-2190,1999.
62. Guy J, Qi X, Muzyczka N, Hauswirth WW. Reporter expression persists 1 year after adeno-associated virus-mediated gene transfer to the optic nerve. Arch Ophthalmol. 117:929-937,1999.
63. Grant CA, Ponnazhagan S, Wang XS, Srivastava A, Li T. Evaluation of recombinant adeno-associated virus as a gene transfer vector for the retina. Curr Eye Res. 16:949-956,1997.
64. Rolling F, Shen WY, Tabarias H, et al. Evaluation of adeno-associated virus-mediated gene transfer into the rat retina by clinical fluorescence photography. Hum Gene Ther. 10:641-648,1999.
65. De Vos AF, Hoekzema R, Kijlstra A. Cytokines and uveitis. Curr Eye Res. 11:581-597,1992.
66. Bhattacherjee P, Henderson B. Inflammatory responses to intraocularly injected interleukin 1.Curr Eye Res. 6:929-934,1987.
67. Rosenbaum JT, Samples JR, Hefeneider SH, Howes EL Jr. Ocular inflammatory effects of intravitreal interleukin 1. Arch Ophthalmol.105 :1117-1120,1987.
68. Yoshida M, Yoshimura N, Hangai M, Tanihara H, Honda Y. Interleukin-1 alpha, interleukin-1 beta, and tumor necrosis factor gene expression in endotoxin-induced uveitis. Invest Ophthalmol Vis Sci. 35:1107-1113,1994.
69. El-Shabrawi YG, Christen WG, Foster SC. Correlation of metalloproteinase-2 and -9 with proinflammatory cytokines interleukin-1b, interleukin-12 and the interleukin-1 receptor antagonist in patients with chronic uveitis. Curr Eye Res.20:211-214,2000.
70. Chiou GC, Chen Z, Xuan B, Yamasaki T, Okawara T. Antagonism of interleukin-1 (IL-1)-induced uveitis with synthetic IL-1 blockers. J Ocul Pharmacol Ther. 13:427-433,1997.
71. Mo JS, Matsukawa A, Ohkawara S, Yoshinaga M. Involvement of TNF alpha, IL-1 beta and IL-1 receptor antagonist in LPS-induced rabbit uveitis. Exp Eye Res. 66:547-557,1998.
72. Brito BE, et al. IL-1 and TNF receptor-deficient mice show decreased inflammation in an immune complex model of uveitis. Invest Ophthalmol Vis Sci. 40:2583-2589, 1999.
73 Chiou GC, et al. Suppression of interleukin-1alpha-induced uveitis and inhibition of fibroblast-like cell proliferation by synthetic interleukin-1 blockers. J Ocul Pharmacol Ther. 15:351-362,1999.
74 De Vos AF, et al. Expression of multiple cytokines and IL-1RA in the uvea and retina during endotoxin-induced uveitis in the rat. Invest Ophthalmol Vis Sci. 35:3873-3883,1994.
75 Dana MR, et al. Interleukin-1 receptor antagonist suppresses Langerhans cell activity and promotes ocular immune privilege. Invest Ophthalmol Vis Sci. 39:70-77,1998.
76 Evans CH and Robbins PD. The interleukin-1 receptor antagonist and its delivery by gene transfer. Rceptor. 4: 9-15,1994.
77 Franks WA, et al. Cytokines in human intraocular inflammation. Curr Eye Res. 11 Suppl:187-191,1992.
78 Ohta K, Wiggert B, Taylor AW, Streilein JW. Effects of experimental ocular inflammation on ocular immune privilege. Invest Ophthalmol Vis Sci. 40:2010-2018,1999.
79 Harris A, Martin B. Beta-blockers and ocular blood flow: a perspective.
J Glaucoma.6:143-145, 1997.
80 Cuzzani O, Onodera T, Gimbel HV. Modulation of the blood-aqueous barrier by light exposure in patients with uveitis. Can J Ophthalmol.32: 244-249,1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top