跳到主要內容

臺灣博碩士論文加值系統

(34.236.192.4) 您好!臺灣時間:2022/08/17 18:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賀少華
研究生(外文):Shao-Hua Ho
論文名稱:考慮貨幣時間價值及允許延遲付款與數量折扣下訂定存貨系統最佳補充與定價策略
論文名稱(外文):A Determination of the Optimal Replenishment and Pricing Policies for Inventory Systems under Permissible Delay in Payment and Quantity Discounts Taking into Account the Time-Value of Money
指導教授:侯國隆侯國隆引用關係
指導教授(外文):Kuo-Lung Hou
學位類別:碩士
校院名稱:國防管理學院
系所名稱:資源管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:106
中文關鍵詞:存貨延遲付款數量折扣損耗貨幣時間價值
外文關鍵詞:inventorypermissible delay in paymentquantity discountdeterioratingtime discounting
相關次數:
  • 被引用被引用:4
  • 點閱點閱:569
  • 評分評分:
  • 下載下載:142
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
存貨金額通常佔公司營運資金相當高的比例,如何協助公司訂定最佳存貨訂購策略,一直是許多研究者多年來致力於發展存貨訂購模型的目標。然而在傳統最佳經濟訂購量的研究上,有許多假設均與實務上之狀況大相逕庭,諸如忽略存貨物品儲存損耗特性、貨品送達即需付款之要求、未考慮購貨數量上之價格折扣及貨幣時間價值等。
在現實社會中,有許多物品如生鮮食品蔬果、高揮發性物質及放射性材料等均具有高儲存損耗率,足以影響最佳存貨補充政策之訂定;另外,在實際的商業交易行為中,供應商通常會給予零售商購貨數量上的價格折扣和提供一段固定的延遲付款期限,零售商在擬定最適存貨補充策略時需妥善運用這些優惠條件,平衡存貨相關成本,藉以提昇市場競爭優勢;除此之外,購買存貨需要大量資金的投入,在訂定存貨補充策略時必須以現值的觀點考慮貨幣的時間價值以適當的反應機會成本。
據此,本研究的主要目的,係以貨幣時間價值的觀點,探討具損耗特性物品於允許延遲付款和數量折扣之環境下,訂定存貨系統最佳補充與定價策略。研究中採用現金流量折現法(DCF)在固定的計畫水平期間內,建立不允許及允許缺貨情況之存貨系統利潤淨現值函數模型,並根據函數特性,提供一求解程序,以決定最適的售價、存貨週期和訂購數量;最後,以數值範例說明求解程序,並針對存貨系統進行敏感性分析,藉此瞭解存貨系統各個參數變動下,對最佳存貨補充策略與定價之影響程度,以提供決策者更精確之判斷與決策。
ABSTRACT
The figure of inventory shares the huge proportion of working capital for a company. The principal goal for many devoted researchers is to develop the optimal replenishment policy for cooperating firms. However, the assumptions of the traditional EOQ models are contradictious on the practices, for example, ignoring the characteristics of deteriorating items and soliciting the payment after goods arriving immediate, the model neglected the quantity discounts and time discounting.
In the real world, many high deteriorating ratio on storage exist, such as fresh vegetables, fruits, high volatile materials, …etc. That is enough to impact the formulation of the optimal replenishment policy. And in the practical behavior of business transaction, the supplier would usually give quantity discount and permissible delay in payment for retailers. At drawing up the optimal replenishment policy, retailers promote the competitive advantages based on appropriately utilizing concessionary condition, equilibrating the relevant cost of inventory. In addition, purchasing inventory needs the investment of huge capital, stipulating the optimal replenishment policy must consider the time value of currency to represent opportunity cost.
The main purpose of this dissertation is to discuss the formulation of the optimal replenishment and pricing policies on easier deteriorating articles in the permission environment of permissible delay in payment and quantity discounts based on the time value of money. This paper employs the discounted cash flow (DCF) approach on the fixed planning horizon to construct the functional model of net profit of inventory system for without backlogging and complete backlogging. The characteristics of prior function provides the law of decision making to determine the appropriate sales price, inventory cycle, order quantity, and the optimal replenishment policy. Finally, a numerical example is presented at the inventory system with undertaking the sensitivity analysis to illustrate the degree of influence of fluctuation of parameters in inventory systems for the optimal replenishment policies which provides more accurate criterion and practical principles for decision makers.
目  錄
中文摘要……………………………………………..……………………..Ⅰ
英文摘要……………………………………………...………………….….Ⅱ
誌謝………………………………………………….………………………Ⅲ
目錄………………………………………………….………………………Ⅳ
圖目錄……………………………………………….………………………Ⅵ
表目錄……………………………………………………………………….Ⅶ
第一章 緒論…………………..…………………………….………………1
1.1 研究背景與動機…………………………………..………………1
1.2 研究目的與範圍…………………………………..………………3
1.3 研究方法與步驟…………………………………..………………4
1.4 論文架構及研究流程………………………………….…………5
第二章 文獻探討……………………………………….…..………………8
2.1 傳統存貨之基本觀念……………………………………….……8
2.2 允許延遲付款情況之探討………………………………………11
2.3 數量折扣之探討…………………………………..……………..12
2.4 損耗性商品之探討………………………………………………..13
2.5 貨幣時間價值與通貨膨脹之探討………………………………15
第三章 不允許缺貨情況下考慮貨幣時間價值及允許延遲付款與數量折扣之損耗性商品存貨模式……………………………………19
3.1 假設條件及符號說明……………………………………………20
3.2 模型建構…………………………………………………………22
3.3 數值範例…………………………………………………………32
3.4 敏感性分析………………………….……………………………36
3.5 本章小結…………………………………..………………………41
第四章 允許缺貨情況下考慮貨幣時間價值及允許延遲付款與數量折扣之損耗性商品存貨模式……………………..……….…………42
4.1 假設條件及符號說明………………………..……………………43
4.2 模型建構……………………………………..……………………44
4.3 數值範例……………………………………..……………………59
4.4 敏感性分析……………………………………..…………………64
4.5 本章小結………………………………………...…………………69
第五章 結論與未來研究方向……………………………………………...70
5.1 結論………………………………………………………………..70
5.2 未來研究方向……………………………………………………..71
參考文獻…………………………………………….………………..……72
附錄A…………………………………………………….…………...……77
附錄B…………………………………………………….…………...……90
圖 目 錄
圖1.1 論文研究架構流程圖…………………………………………………7
圖2.1 經濟訂購量模式………………………………………………………9
圖3.1 當M≦T時,存貨水準與利息收入關係圖…………………….……19
圖3.2 當M>T時,存貨水準與利息收入關係圖…………………….……20
圖3.3 不允許缺貨情況下,考慮延遲付款之存貨系統訂購時點及存貨水準變動圖…………………………………………………………….22
圖3.4 全單位型數量折扣在三個折扣點下之淨利潤……………………..27
圖4.1 當M≦T1時,存貨水準與利息收入關係圖……………..…….……42
圖4.2 當M>T1時,存貨水準與利息收入關係圖………………..….……43
圖4.3 允許缺貨情況下,考慮延遲付款之存貨系統訂購時點及存貨水準變動圖……………………………………………………………….44
表 目 錄
表2.1 學者Silver&Raafat對存貨問題的分類………………….………10
表2.2 學者Prasad對存貨問題之分類………….……….………………11
表2.3 學者Ghare和Schrader對損耗產品特性之分類…..…….………14
表2.4 相關文獻彙整表………….…….………………..……..…………16
表3.1 M≦T第一個折扣區間之NP1(s,n)表……..……….…..…………33
表3.2 M≦T第二個折扣區間之NP2(s,n)表……..……….…..…………33
表3.3 M≦T第三個折扣區間之NP3(s,n)表……..……….……….……34
表3.4 M≦T情況下最適NP求解表…….…………..…………….……35
表3.5 M>T第一個折扣區間之NP1(s,n)表……..……….………..……35
表3.6 M>T第二個折扣區間之NP2(s,n)表……..……….…...…..……35
表3.7 M>T第三個折扣區間之NP3(s,n)表……..……….…...…..……36
表3.8 M≦T情況下參數A之敏感性分析………………..…...…..……37
表3.9 M≦T情況下參數h之敏感性分析…………………..….….……37
表3.10 M≦T情況下參數d之敏感性分析…………………..….….……37
表3.11 M≦T情況下參數θ之敏感性分析………………..…...…..……38
表3.12 M≦T情況下參數R之敏感性分析…………………..….………38
表3.13 M≦T情況下參數M之敏感性分析…………………..…...…….38
表3.14 M>T情況下參數A之敏感性分析………………..…...………..39
表3.15 M>T情況下參數h之敏感性分析…………………..…...……..39
表3.16 M>T情況下參數d之敏感性分析…………………..….………40
表3.17 M>T情況下參數θ之敏感性分析…………………..….…...….40
表3.18 M>T情況下參數R之敏感性分析…………………..…...…..…40
表3.19 M>T情況下參數M之敏感性分析…………………..….….…..40
表4.1 M≦T1第一個折扣區間之NP1(s, T1,n)表…………………..……60
表4.2 M≦T1第二個折扣區間之NP2(s, T1,n)表…………………..……60
表4.3 M≦T1第三個折扣區間之NP3(s, T1,n)表…………………..……61
表4.4 M≦T1情況下最適NP求解表……………..………………….…62
表4.5 M≦T1第一個折扣區間之NP1(s, T1,n)表……....……………..…62
表4.6 M≦T1第二個折扣區間之NP2(s, T1,n)表.…..…………………..63
表4.7 M≦T1第三個折扣區間之NP3(s, T1,n)表….…..………………...63
表4.8 M≦T1情況下參數A之敏感性分析………………..…..….…..…64
表4.9 M≦T1情況下參數h之敏感性分析…………………….....….…64
表4.10 M≦T1情況下參數d之敏感性分析…………………..….…...…65
表4.11 M≦T1情況下參數θ之敏感性分析………………..……………65
表4.12 M≦T1情況下參數R之敏感性分析……………………..…….…65
表4.13 M≦T1情況下參數M之敏感性分析…………………….…….…66
表4.14 M≦T1情況下參數A之敏感性分析………………………..……67
表4.15 M≦T1情況下參數h之敏感性分析……………………......……67
表4.16 M≦T1情況下參數d之敏感性分析…………………...…...……67
表4.17 M≦T1情況下參數θ之敏感性分析…………………..…...….…68
表4.18 M≦T1情況下參數R之敏感性分析…………………..…...….…68
表4.19 M≦T1情況下參數M之敏感性分析…………..…….….....….…68
參 考 文 獻
中文部份:
[1]陳文哲、葉宏謨、佘溪水、楊銘賢著(民八四),「生產管理」,中興管理顧問公司,第六版。
[2]賴士葆著(民八四.八月),「生產作業管理」,華泰書局,第二版,。
英文部份:
[3]Abad, P. L., (1988), “Determining optimal selling price and lot size when the supplier offers all-unit quantity discounts”, Decision Sciences, Vol.19, No.3, pp.622-634.
[4]Aggarwal, S. P. and Jaggi, C. K., (1995), “Ordering policies of deteriorating items under permissible delay in payments”, Journal of the Operational Research Society, Vol.46, pp.458-462.
[5]Benton, W. C., and Park, S, (1996), “A classification of literature on determining the lot size under quantity discounts”, European Journal of Operational Research, Vol.92, pp.219-238.
[6]Bose, S., Goswami, A.,and Chaudhuri, H. S.,(1995), “An EOQ model for deteriorating items with liner time-dependent demand rate and shortage under inflation and time diswcounting”, Journal of the Operational Research Society, Vol.46, pp.771-782.
[7]Burwell, T. H., Dave, D. S., Fitzpatrick, K. E. and Roy, M. R., (1991), “An inventory model with planned shortages and price dependent demand”, Decision Sciences, Vol.22, pp.1187-1191.
[8]Buzacott, J. A., (1975), “Economic order quantities with inflation”, Operations Research Qurterly, Vol.26, pp.553-558.
[9]Chandra, M. J. and Bahner, M. L., (1985), “The effects of inflation and time value of money on some inventory systems”, International Journal of Production Research, Vol.23, No.4, pp.723-730.
[10]Chapman, C. B., Ward, S. C., Cooper, D. F., and Page, M. J., (1985), “Credit Policy and inventory control”, Journal of the Operation Research Society, Vol.35, pp.1055-1065.
[11]Chung, K. H., (1989), “Inventory control and trade credit revised”, Journal of the Operation Research Society, Vol.40, pp.495-498.
[12]Chung, K. J., (1998), “A theorem on the determination of economic order quantity under conditions of permissible delay in payments”, Computers and Operations Research, Vol.25, pp.49-52.
[13]Chung, K. J., Liu, J. and Tsai, S. F., (1997), “Inventory systems for deteriorating items taking account of time value”, Engineering Optimization, Vol.27, pp.303-320.
[14]Chung, K. J., Lin, C. N., (2001), “Optimal inventory replenishment models for deteriorating items taking account of time discounting”, Computers and operations research, Vol. 28, pp. 67-83.
[15]Convert, R. P. and Philip, G. C., (1973), “An EOQ model for items with Weibull distribution deterioration”, AIIE Transactions, Vol.5, pp.323-326.
[16]Davis, R. A. and Gaither, N., (1985), “Optimal ordering policies under conditions of extended payment privileges”, Management Science, Vol.31, pp. 499-509.
[17]Fordyce, J. M., and Webster, F. M., (1984), “Nonconstant unit cost/price with the Wagner-Whitin algorithm”, Production and Management, Vol.26, No.1, pp.71-80.
[18]Ghare, P. M. and Schrader, G. F., (1963), “A model for exponential decaying inventory”, Journal of Industrial Engineering, Vol.14, pp.238-243.
[19]Goyal, S. K., (1985), “Economic order quantity under conditions of permissible delay in payments”, Journal of the Operational Research Society, Vol.36, No.4, pp.335-339.
[20]Hadley, G., (1964), “A comparison of order quantities computed using the average annual cost and discounted cost”, Management Science, Vol.10, pp.472-476.
[21]Haley, C. W. and Higgins, R. C., (1973), “Inventory policy and trade credit financing”, Management Science, Vol.20, pp.464-471.
[22]Harris, F. W., (1915), “Operations and costs”, Chicago.
[23]Jamal, A. M., Sarker, B. R., and Wang, S., (1997), “An ordering policy for deteriorating items with allowable shortage and permissible delay in payment”, Journal of the Operational Research Society, Vol.48, pp.826-833.
[24]Kingsman, B. G., (1983), “The effect of payment rules on ordering and stockholding in purchasing”, Journal of the Operational Research Society, Vol.34, No.11, pp.1085-1098.
[25]Liao, H. C., Tsai, C. H., and Su, C. T., (2000), “An inventory model with deteriorating items under inflation when a delay in payment is permissible”, International Journal of Production Economics, Vol.63, pp.207-214.
[26]Love, S. F.,(1979), Inventory control, McGraw-Hill, New York.
[27]Misra, R. B., (1977), “A note on optimal inventory management under inflation”, Naval Research Logistics, Vol.26, pp.161-165.
[28]Montgomery, D. C., (1982) “Economic design of an control chart”, Journal of Quality Technology, Vol.14, pp.40-43.
[29]Prasad, S.,(1994), “Classification of inventory models and systems”, International Journal of Production Economics, Vol.34, pp.209-222.
[30]Raafat, F., (1991), “Survey of literature on continuously deteriorating inventory models”, Journal of the Operational Research Society, Vol.42, No.1, pp.27-37.
[31]Shah, Y. K., (1977), “An order-level lot-size inventory model for deteriorating items”, AIIE Transcations, Vol.9, pp.108-112.
[32]Sharker, B. R., Jamal, A. M. M., and Wang, S., (2000), “Supply chain models for perishable producte under inflation and permissible delay in payment”, Computers and Operations Research, Vol. 27, pp. 59-75.
[33]Silver, E. A., (1981),“Operations research in inventory management: A review and critique”, Operations Research, Vol.29,No.4,pp.628-645.
[34]Silver, E. A., Pyke ,D.F., and Peterson, R.,(1998), Inventory Management and Production Planning and Scheduling, 3rd ed, John Wiley & Sons.
[35]Tersine, R. J., and Toelle, R. A.,(1985), “Lot size determination with quantity discounts”, Production and Management, Vol.26, No.3, pp.1-23.
[36]Ting, P. S. and Chung, K. J., (1994), “Inventory replenishment policy for deteriorating items with a linear trend in demand considering shortages”, International Journal of Operations and Production Management, Vol.14, No.8, pp.102-110.
[37]Trippi, R. R. and Lewin, D. E., (1974), “A present value formulation of the classical EOQ problem”, Decision Sciences, Vol.5, pp.30-35.
[38]Wee, H. M., (1999), “Deteriorating inventory model with quantity discount, pricing and partial backordering”, International Journal of Production Economics, Vol.59, pp.511-518.
[39]Wee, H. M. and Law, S. T., (2001), “Replenishment and pricing policy for deteriorating items taking into account the time-value of money”, International Journal of Production Economics, Vol.71, pp.213-220.
[40]Wilson, R. H., (1934), “A scientific route for stock control”, Harvard Business Review, Vol.13, pp.116-128.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊