跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/10/01 21:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳文濱
研究生(外文):Wen-Pin Chen
論文名稱:運用模擬退火法求解淨現值存貨模式最佳週期近似值
論文名稱(外文):An Application of Simulated Annealing Algorithm for The Formula Approximation of the Near-Optimal Cycle Time Based on the Net 仁Present Value
指導教授:藍筱蘋藍筱蘋引用關係鐘崑仁鐘崑仁引用關係
指導教授(外文):Shaw-Ping LanKun-Jen Chung
學位類別:碩士
校院名稱:國防管理學院
系所名稱:國防決策科學研究所
學門:社會及行為科學學門
學類:綜合社會及行為科學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:47
中文關鍵詞:存貨淨現值最佳週期模擬退火法
外文關鍵詞:InventorySimulated Annealing AlgorithmThe Optimal Cycle TimeNet Present Value
相關次數:
  • 被引用被引用:1
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
隨著全球化的程度日深,使得企業在面臨組織資源有限與必需積極趨利避險,以擴大產業競爭優勢的同時,如何在有限期程內正視存貨的控制,以減少倉儲成本不當積累,並尋求最大的成本效益為依歸,應是重要的課題。
傳統EOQ存貨模式,因著簡明易懂、便於運用,並得以訂購成本及存貨持有成本之最低累績總和,決定最佳訂購量及次數,儼然引為當代論述之要。然亦因其限制條件眾多,致時生結果與實情相悖情事。如傳統EOQ存貨模式,假設通貨膨脹處於極其穩定狀態,即未將折現的因素考量在列,顯與現況不符。因此嗣後由Trippi 和Lewin等學者,針對真實現況輔以補強因素後,陸續運用折現等方法,提出較合理的模式加以探討,以充分描述實情與現況相結合,即此立意。
本研究據此要義,依據Kim、Philippators及Chung等三位學者,藉由現金流量之動態資訊,對於整批銷售、有限均勻生產存貨系統,所提供之評鑑存貨的投資方法為研究方向。研究提出運用模擬退火法求取存貨模式之最佳週期的研究所得,並分析其優越性。
  同時並研究建立,另一以有限時距為分析縱軸的模式,期藉有限與無限時距之比較,提出本研究論述見解,並究其時距差異分析,俾利以不同面相呈現事實原貌,以增益企業組織運作時參據。
關鍵詞:存貨、最佳週期、淨現值、模擬退火法

ABSTRACT
Complying with the depth of globalization, enterprises in organizationally bounded resources, positively profit-approaching, and risk-avoiding positions to amplify sustainable competitive advantage, should be focus on inventory control in a limited period to decrease inappropriate accumulation on inventory carrying cost and the orientation of procurement of maximum cost benefit as a vital lesson.
The traditional EOQ inventory model is often used as a main method to solve the above problem’s proposed . Due to its easiness and convenience. With many bounded conditions, however, it sometimes results in contradiction between expected and actual outcome. The traditional EOQ inventory model assumes inflation is in a very stable status without taking discount into account as a factor, which obviously effect the real situation. Therefore, the specialists, like Trippi and Lewin , announced several reasonable models adding reinforcement factor in real situation in discussing so that the real situation can be fully described.
This research adopts the investment approach of evaluating inventory in batch sales and finite uniform production rate inventory system by the dynamic information of cash flow published by Kim, Philippators and Chung. We use Simulated Annealing Algorithm to find the optimal cycle time of inventory model and analyzes the superiority of the approach.
This paper establishes a model with finite time horizon as analytical axis and provides viewpoints by comparing finite time horizon and infinite time horizon. According to analysis of time horizontal gaps, this research actually presents original its with different dimensions and makes a reference for enterprises to improve the operations.
Keywords:Inventory, The Optimal Cycle Time, Net Present Value, Simulated Annealing Algorithm

目 錄
中文摘要...............................................................I
英文摘要..............................................................II
誌謝....................…………..................……................. III
目錄...........................................………............…....V
圖目錄..........................................................…..VIII
表目錄.........................……................................IⅩ
第一章 緒論.......................................1
1.1研究動機與目的...............................................1
1.2研究方法及步驟................................................2
第二章 文獻探討...................................4
第三章 模式說明及建構探討...................................8
3.1符號定義..................................................8
3.2模式一說明...........................................8
3.2.1現金流量界定...........................................8
3.2.2模式說明...........................................9
3.2.3模式求解...........................................9
3.3模式二建構...............................................11
3.3.1模式建構...........................................11
3.3.2模式求解...........................................11
3.4模擬退火法求解...............................................14
3.4.1模擬退火法基本原理...........................................14
3.4.2模擬退火法相關文獻...........................................15
3.4.3模擬退火法演算步驟...........................................16
第四章 模式驗證...............................................22
4.1模式一驗證.................................................22
4.1.1範例說明...........................................22
4.1.2模擬退火法求解...........................................22
4.1.3極值點數值驗證...........................................23
4.1.4敏感度分析...........................................23
4.2模式二驗證.................................................25
4.2.1範例說明...........................................25
4.2.2模擬退火法求解...........................................25
4.2.3極值點數值驗證...........................................26
4.2.4敏感度分析...........................................26
4.2.5固定最佳週期T條件下w(期數)與NPV(w,T)(目標函數)關係探
討………………………………………………………….....28
第五章 結論與建議...............................................30
5.1結論…………………………….....................30
5.2後續研究建議..................................................30
參考文獻............................................................31
附錄............................................................34
作者簡介.................................................................47
圖 目 錄
圖1 研究步驟流程圖........................................3
圖3-1 Metropolis研究抽樣演算法流程圖..........………......18
圖3-2 模擬退火演算法流程圖....……………….....………......21
圖4-6 w期數與NPV(w,T)目標函數之關係圖………….............29
表 目 錄
表2 研究本文淨現值模式相關文獻................................7
表3-1 模擬退火法與最佳解類比關係............................15
表4-1 求解範例運用模擬退火法測試結果.......................23
表4-2模式一敏感度分析表……………………….............24
表4-3求解範例運用模擬退火法測試結果..……….............25
表4-4修正表4-3複算次數(4,5)次之T值帶入模式求解結果.....26
表4-5模式二敏感度分析表……………………….............28
表4-6 w期數與NPV(w,T)目標函數之關係………….............29

參考文獻
一、 中文部分
【1】孟祥德(2000),具退化性產品在不同需求條件下之存貨模式探討,國防管理學院資源管理研究所碩士論文,頁7。
【2】許民聖(2000),運用模擬退火法求解流程型工廠之多目標排程,國立台灣科技大學工業管理系碩士論文,頁15。
【3】廖麗滿(2001),塔布搜尋法求解排程問題之研究,國立台灣科技大學工業管理系博士論文,頁12。
【4】葉淑君(1999),中心廠JIT採購與衛星廠製造批量互動模式之研究,國立台灣科技大學管理技術研究所工業管理學程碩士論文,頁57。
【5】戴忠淵(1997),考慮缺貨時間欠撥待補量與存貨水準有關之退化性存貨模式,淡江大學管理科學系碩士論文,頁1-4。
【6】蘇志傑(1999),模擬退火法之應用與改進,國立中興大學機械工程研究所碩士論文,頁10-12。
二、英文部分
【7】Buzacott J. A.(1975), “Economic Order Quantities with Inflation”, Operational Research Quarterly, Vol.26, No.3, pp.553-558.
【8】Chung K. J. and Lin S. D.(1995),“Technical Note-Evaluating Investment in Inventory Policy under a Net Present Value Framework”, The Engineering Economist , Vol.40, No.4, pp.377-383.
【9】Cerny V. (1985), “Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm”, Journal of Optimization Theory and Applications, Vol.45, No.1 , pp.41-51.
【10】Gurnani, C., (1983), “Economic Analysis of Inventory Systems”, International Journal of Production Research, Vol.21,No.2, pp.261-277.
【11】Gurnani C.(1985), “Economic Analysis of Inventory Systems: A Reply”, International Journal of Production Research, Vol.23, No.4, pp.771-772.
【12】Kim Y. H. , Philippatos G. C. and Chung K. H. (1986), “Evaluating Investment in Inventory Policy : A Net Present Value Framework”, The Engineering Economist, Vol.31, No.2, pp.119-136.
【13】Kirkpatrick S., Gelatt C. D., Jr. and Vecchi M. P. (1983),“Optimization by Simulated Annealing”, Science, Vol.220, No4598, pp.671-680.
【14】Moon I. and Yun.W. (1993), “A Note on Evaluating Investments in Inventory Systems : A Net Present Value Framework”, The Engineering Economist , Vol.39, No.1, pp.93-99.
【15】Metropolis N., Rosenbluth A. W. , Rosenbluth M. N. ,Teller A. H. and Teller E. (1953), “Equation of State Calculation by Fast Computing Machines”, Journal of Chemical Physics, Vol.21, No.6, pp.1087-1092.
【16】Roumi E. and Schnabel J. A. (1990), “Evaluating Investment in Inventory Policy : A Net Present Value Framework-An Addendum”, The Engineering Economist, Vol.35, No.3,pp.239-246.
【17】Silver E. A., Pyke D. F. and Peterson R, (1998),Inventory Manage-
ment and Production Planning and Scheduling , New York: John Wiley & Sons, 3rd edition.
【18】Trippi R. R. and Lewin D. E.(1974), “A Present Value Formulation of the Classical EOQ Problem”, Decision Sciences, Vol.5, pp.30-35.
【19】Thompson H. E.(1975), “Inventory Management and Capital Budgeting : A Pedagogical Note”, Decision Sciences , Vol.6, pp.383-398.
【20】Tersine R. J. (1994), Principles of Inventory and Materials
Management, Englewood Cliffs: Prentice-Hall,4th edition.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top