跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 09:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴文清
研究生(外文):Wen-Ching Lai
論文名稱:藍徹斯特模式之評估-以阿登戰役為例
論文名稱(外文):An Estimation of Lanchester Model for Ardennes Campaign
指導教授:藍筱蘋藍筱蘋引用關係鐘崑仁鐘崑仁引用關係
指導教授(外文):Shaw-Ping LanKun-Jen Chung
學位類別:碩士
校院名稱:國防管理學院
系所名稱:國防決策科學研究所
學門:社會及行為科學學門
學類:綜合社會及行為科學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:40
中文關鍵詞:藍徹斯特方程式阿登戰役耗損率
外文關鍵詞:Lanchester EquationArdennes Campaignattrition rate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在現代戰爭中,我們知道戰爭的勝利來源主要來自於一個重要的因素,即掌握由攻擊轉換為防守或者是由防守轉換為攻擊的重要時機。在本文中,我們除了介紹藍徹斯特直線律與平方律外,最主要是利用混合律來反映出第二次世界大戰中的阿登戰役,並與藍徹斯特原型方程式中之直線律與平方律求得之最小平方誤差和比較,進而瞭解德軍在此戰役中由攻擊轉換為防守的時間及德軍與盟軍雙方之耗損率,文內所建構混合律的數學模式中,即包含了雙方耗損率及攻守轉換時間等變數,這些變數幫助我們瞭解混合律的數學模式較直線律與平方律,更能反映出第二次世界大戰中阿登戰役的歷史資料。

In modern warfare, many believe the decisive factor in winning a battle is seizing the right moment to shift from defense to attack, or vice versa. In this dissertation, the Lanchester Linear Law and Square Law are introduced, other than these, the Ardennes Campaign during World War II is reflected by means of the Mixed Law. In the meantime, through the minimum variation and comparison evaluated from Linear Law and Square Law in the Lanchester Original Form, we understand how was the time both German and Allied Army measured changing technique from attacking to defence and how was the Consumption Ratio for both of parties. The mathematical model in the Mix Law constructed in this dissertation, including the variations of the consumption ratio and shifting time from attacking to defending, showed more comprehension on mathematical model of Linear Law and Square Law, and reflected more historical information on the Ardennes Campaign during World War II.

中文摘要...............................................................I
英文摘要...................................................................II
誌謝...........................................................III
目錄...............................................................V
圖目錄............................................................ VII
表目錄........................................................... VIII
第一章 緒論.......................................1
1.1研究動機...............................................1
1.2研究目的................................................2
1.3研究架構................................................3
第二章 文獻探討...................................5
2.1歷史背景回顧.......................................5
2.2藍徹斯特方程式緣起...............................11
2.3研究學者探討......................................12
2.4本研究模式及方法..................................15
第三章 模式建構與符號...................................17
3.1模式架構..................................................17
3.1.1直線律..............................................18
3.1.2 平方律..................................................20
3.2模式建構...........................................22
3.3符號說明...............................................23
3.4目標函數...............................................25
第四章 研究方法...............................................26
4.1模式推導.................................................26
4.2阿登戰役歷史資料........................................29
第五章 結論與建議...............................................31
5.1藍徹斯特方程式的優缺點...............................31
5.2結論建議..................................................31
5.3未來研究方向.............................................32
參考文獻............................................................37
作者簡介.................................................................40

[1] 唐文漢(民八五),兵力耗損理論用於作戰判斷之研究,國防管理學院資源管理研究所碩士論文。
[2] 郭俊義(民七五), “計算機模擬理論方法及其應用.” 宇航出版社,
pp.271-275.
[3] 孟昭宇著(民八八),「軍事作業研究」,第五章─藍徹斯特方程式應用於坦克作戰分析(微分方程估算戰損)。
[4] Bracken, J, (1995), “Lanchester models of Ardennes Campaign.” , Naval Research Logistics, Vol. 42, pp. 559-577.
[5] Brackney, H. (1959), “The Dynamics of Military Combat.” , Operation Research Vol. 7, pp. 30-44.
[6] Deitchman, S. J. (1962),“A Lanchester model of guerrilla warfare.”Operation Research Vol. 10, pp. 818-827.
[7] Engel, J. H. (1954),“A verification of Lanchester’s Law.”Operation Research Vol. 10, pp. 163-171.
[8] Fricker, R. D. (1998),“Attrition models of the Ardennes Campaign.” Naval Research Logistics Vol. 45, pp. 1-22.
[9] Helmbold, R. L. (1994),“Direct and Inverse Solution of the Lanchester Square Law with General Reinforcement Schedules.”European Journal of Operations Research Vol. 77, No. 3, pp. 486-495.
[10] James G. Taylor (1974), “Lanchester-Type Model of warfare and Optimal Control.” Naval Research Logistics Quarterly 21, pp. 79-106.
[11] James G. Taylor (1974), “Some Differential Game of Tactical Interest.” Operation Research Vol. 22, pp. 304-317.
[12] James G. Taylor (1975), “On the Treatment of Force-Level Constraints in Time-Sequential Combat problem.” Naval Research Logistics Quart22, pp. 617-650.
[13] James G. Taylor and G.G.Brown (1976), “Canonical Methods in the Solution of Variable.” Operation Research Vol. 24, pp. 44-69.
[14] Lanchester, F. W. (1956),“Aircraft in Warfare. The Dawn of the Fourth Arm-No.V.” , Reprinted on pp. 2138-2148 of The World of Mathematics, vol. IV , J. Newman, Simon and Schuster, New York.
[15] Lan, S. P., Wan, W. J., Chu, P. and Lin, P. H. (1998), “Fitting Lanchester’s Square Law to the Ardennes Campaign.”European Journal of Operation Research.
[16] Morse, P. M. and Kimball, G. E. (1951), Methods of operations research, Wiley, New York.
[17] Maybee, J. S. (1985), “The theory of combined-arms Lanchester-type models of warfare.”Naval Research Logistics Quarterly 32, pp. 225-237.
[18] Peter Chu and Patrick S. Chen, (2000), “A simple method to fit Lanchester’s linear model for Ardennes Champaign.” Journal of Information & Optimization Sciences, Vol. 21, No. 3, pp. 421-427
[19] Peter Chu and Patrick S. Chen, (2001), “Applying Lanchester’s Linear Law To Model the Ardennes Campaign.” Naval Research Logistics, Vol. 48.
[20] R. H. Shudde, “Lanchester’s Theory of Combat” Chapter 6.
[21] Samz, R. W. (1972), “Some comments on Engel’s ‘A verification of Lanchester’s Law.’”Operation Research Vol. 20, pp. 49-52.
[22] Taylor, James G. (1981), “Force-On-Force Attrition Modeling.” Military Application-Section Operation Research Society of American, Arlington, VA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top