跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/14 14:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李仕銘
論文名稱:作戰經驗影響下集中化序列攻擊最佳化模式
論文名稱(外文):The Optimization of a Centralized Sequential Attack Problem with Operations Experience Effect
指導教授:張正昌張正昌引用關係
學位類別:碩士
校院名稱:國防管理學院
系所名稱:國防決策科學研究所
學門:社會及行為科學學門
學類:綜合社會及行為科學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:63
中文關鍵詞:集中化序列攻擊策略路徑效能序列效能作戰經驗基因演算法
外文關鍵詞:Centralized sequential attack strategyPath effectSequential effectOperations experienceGenetic Algorithm
相關次數:
  • 被引用被引用:6
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要
現今戰法及戰鬥形態,隨戰具之創新而改變,而戰具之創新,則隨科技發展日益精進,致始現今戰場充斥著混亂之特性,尤其當戰場雙方一旦交鋒,指揮命令和情報將會趨向渾沌,過去僅依據指揮官經驗判斷或參考準則的一般性描述,所進行之單一攻擊目標選定,已顯得相當困難,更遑論在面對多個且重要程度不一的目標攻擊優先順序排定問題上,決策者可能面臨之窘境更是不可言喻。因此,本研究乃係基於兵力整合、有效運用之基本條件下,採集中化序列攻擊策略做為多目標攻擊推進模式之合理策略選擇,且由於任一攻擊目標之預期戰果達成時間通常受某些因素影響,而攸關於前面已攻擊目標,欲實際測度是相當困難的,故本研究導入路徑效能及序列效能等概念,並考慮作戰經驗為影響攻擊目標之預期戰果期望達成時間之主要因子,據此,以0-1整數規劃構建集中化序列攻擊最佳化模式,藉以求得在最短時間內達至預期戰果之序列攻擊路徑。最後,本研究亦考慮集中化序列攻擊最佳化模式等價於不對稱旅行推銷員問題之情形,並以此例,運用基因演算法之套裝軟體Evolver求解。
Abstract
The current military operation and the form of battle evolve in tandem with the weapon’s innovation, which in turn is driven by the progress in technology development. The present battlefield is chaotic; especially when the two sides hit off, orders and information tend to be fuzzy. The conventional way of selecting a single attack target appears to be rather difficult already as it is based on the commander’s experience and judgment or the general description of reference guidelines, let alone the dilemma that would most likely occur to decision-makers when prioritizing multiple attack targets of different degrees of importance. This research takes into account the fundamental conditions for integration and effective operation of military forces and adopts centralized sequential attack strategy for the attack and advancement mode with multiple targets. Since the time it takes to obtain the anticipated result of any particular attack target is usually affected by several factors as well as precedent attack targets, measuring the time in reality turns out to be an extraordinarily difficult task. This study introduces the concepts of path effect and sequential effect, and deems combat experience as a critical factor affecting the time to obtain the anticipated result of an attack target, based on the above assumptions, the optimization model of centralized sequential attack is constructed to obtain the sequential attack path leading to the anticipated combat results within the shortest time period. Finally, this research also considers the condition of the optimization of sequential attack problem equality to Asymmetric Traveling Salesman Problem, and used evolver which is the package of Genetic Algorithm to solve this case.
目    錄
中文摘要 ………………………………………………………… I
英文摘要 ………………………………………………………… II
誌謝 …………………………………………………………… III
目錄……………………………………………………………… IV
圖目錄 ………………………………………………………… VII
表目錄 ………………………………………………………… VIII
第一章 緒 論 ………………………………………… 1
1.1 研究動機 .…………………………………………… 1
1.2 研究目的 ….………………………………………… 2
1.3 研究範圍與假設 .…………………………………… 3
1.4 文獻探討.…………………………………………… 4
1.4.1 集中原則之內涵………………………………… 4
1.4.2 集中原則與作戰成效…………………………… 5
1.4.3 作戰經驗與作戰成效…………………………… 6
1.5 研究架構 .…………………………………………… 7
第二章 研究方法…………………………………………… 8
2.1 整數規劃…………………………………………… 8
2.1.1整數規劃概述…………………………………… 8
2.1.2整數規劃之特性及求解方法…………………… 9
2.2 基因遺傳演算法…………………………………… 10
2.2.1基因遺傳演算法概述…………………………… 10
2.2.2基因遺傳演算法之架構………………………… 11
2.2.3基因遺傳演算法基本運算子………………… 12
2.2.4基因遺傳演算法之優點………………………… 15
2.3 Evolver軟體簡介………………………………… 16
第三章 集中化序列攻擊策略………………………………… 18
3.1 問題敘述……………………………………………… 18
3.2集中化序列攻擊策略…………………………………… 19
3.3名詞界定………………………………………………… 21
3.3.1作戰經驗影響…………………………………… 21
3.3.2作戰經驗影響指標………………………………… 22
3.3.3路徑效能…………………………………………… 22
3.3.4序列效能…………………………………………… 23
第四章 集中化序列攻擊最佳化模式……………………… 26
4.1作戰經驗影響之基本假設………………………… 26
4.1.1 作戰經驗具不完全遺忘性質……………………… 26
4.1.2作戰經驗轉移具融合性質………………………… 26
4.2基本結構性質……………………………………… 27
4.3作戰經驗影響的基本模式……………………………… 33
第五章 參數估計與範例………………………………………… 39
5.1參數估計………………………………………………… 39
5.2參數估計之範例………………………………………… 40
第六章 簡例說明………………………………………   42
6.1等價於ATSP之個例………………………………………… 42
6.2 旅行推銷員問題介紹 ……………………………………… 43
6.2.1旅行推銷員問題…………………………………… 43
6.2.2不對稱旅行推銷員問題…………………………… 44
6.3數字化簡例……………………………………………… 45
第七章 結論與建議………………………………………… 49
參考文獻 ……………………………………………………… 50
一、中文部分 …………………………………………… 50
二、英文部分 ……………………………………………… 50
作者簡介 ………………………………………………………… 55
圖 目 錄
圖2.1 組織狀態圖………………………………………………… 11
圖2.2 基因遺傳演傳算法之流程圖……………………………… 12
圖3.1 集中化序列攻擊策略圖…………………………………… 20
圖3.2 預期戰果達成時間與作戰經驗強度關係圖 …………… 24
圖4.1 序列效能圖 ……………………………………………… 33
圖4.2 線性函數作戰經驗影響圖 ……………………………… 35
圖6.1最佳解搜尋收斂圖 ……………………………………… 47
圖6.2 最佳解搜尋收斂圖……………………………………… 47
圖6.3 實際目標表示之集中化序列攻擊圖……………………… 48
表 目 錄
表2.1 基因遺傳演算法中常用之交配型式……………………… 14
表5.1 相對權重表………………………………………………… 41
表5.2 參數估計表………………………………………………… 41
表6.1 之參數估計值………………………………………………46
表6.2 之參數估計值………………………………………………46
參考文獻
一、 中文部份
【1】馮倫意編(民七五),「戰爭原則釋義」,台北:黎明文化。
【2】蕭天石(民七七),「世界名將治兵語錄」,台北:自由出版社。
【3】李零(民八二)譯註,孫武撰,孫子兵法,台北:錦繡。
【4】陳坤茂著(民八六),作業研究,台北;華泰。
【5】高德斯坦(民八八),心理作戰,台北;國防部總政治作戰部譯。
【6】國防部(民八九),中華民國八十九年國防報告書,台北;國防部編印。
【7】國防部頒行(民八九),「國軍軍語辭典─八十九年修訂本」。
二、 英文部份
【8】Alexande B. (1993), How Great Generals Win, W. W. Norton & Company.
【9】Chatterjee, S., Carrera, C. and Lynch, L. A. (1996),“Genetic Algorithm
and Traveling Salesman Problem.”European Journal of Operational Research, Vol. 93, pp. 490-510.
【10】Cruyssen, P. V. D. and Rijkaert, M. J. (1978),“Heuristic for the Asymmetric Traveling Salesman Problem.”Journal of Operational Research Society, Vol. 29, pp. 697-701.
【11】Elbeltagi, E. and Hegazy, T. M. (1999),“Genetic Optimization of Site Layout Planning.”AACE. InternationalTransactions, IT.05.
【12】Glover, F. (1989),“Tabu Search-Part Ι.”Operations Research Society of America Journal on Computing, Vol. 1, No. 3, pp. 190-206.
【13】Goldberg, D. E. (1989), Genetic Algorithms in Search Optimization and Machine Learning, Addision-Wesley Publish Company, Inc.
【14】Goldberg, D.E. (1994), “Genetic and Evolutionary Algorithm Come of
Age.” Communication of the ACM, Vol. 37, No. 3, pp. 113-119.
【15】Golden, B. L., Bodin, L. D., Doyli, T., Stewart, W. (1980),“Approximate Traveling Salesman Algorithm.”Operations Research, Vol. 28, pp. 694-711.
【16】Held, M. and Karp, R. M. (1962), “A Dynamic Programming Approach to Sequencing Problems.” Journal of Society Industrial and Applied Mathematics, Vol. 10, pp. 196-210.
【17】Holland, J. H. (1975), Adaptation in Nature and Artificial Systems, Ann Arbor: The University of Michigan Press.
【18】Hyun, C. J., Kim, Y. and Kim,Y. K. (1998),“A Genetic Algorithm for Multiple Objective Sequencing Problems in Mixed Model Assembly Lines.”Computers & Operations Research, Vol. 25, No. 7, pp. 675-690.
【19】Jaszkiewicz, A. (2002),“Genetic Local Search for Multi-objective Combinational Optimization.”European Journal of Operational Research, Vol. 137, pp. 50-71.
【20】Kannellakis, P. C. and Papadimitriou, C. H. (1980),“Local Search for the Asymmetric Traveling Salesman Problems.”Operations Research, Vol. 28, pp. 1086-1099.
【21】Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983),“Optimization by Simulated Annealing.”Science, Vol. 220, pp. 671-680.
【22】Liao, S. h. (2002),“Problem solving and knowledge inertia.”Expert System with Application, Vol. 22, No. 1, pp. 21-31.
【23】Louis, S. J. and Li, G. (2000),“Case Injected Genetic Algorithm for Traveling Salesman Problems.”Information Sciences, Vol. 122, pp. 201-225.
【24】Liddell-Hart B. H. (1991), Strategy, Rev edition, Meridian Books.
【25】Miroslaw, M., Mohan, G. and Mihir, P. (1989),“Serial and Parallel Simulated Annealing and Tabu Search Algorithms for the Traveling Salesman Problem.”Annals of Operations Research, Vol. 21, pp. 59-84.
【26】Mukherjee, B. (1999),“A Novel Neutron Energy Spectrum Unfolding
Tool Using a Genetic Algorithm.”Nuclear Instruments and Method in Physics Research, Vol. 432, pp. 305-312.
【27】Pekny, J. F. and Miller, D. L. (1990),“A Parallel Branch and Bound Algorithm for Solving Large Asymmetric Traveling Salesman Problem.” Journal of the ACM, pp. 56-62.
【28】Qu, L. and Sun, R. (1999),“A Synergetic Approach to Genetic Algorithm for Solving Traveling Salesman Problem.”Information Sciences, Vol. 117, pp. 267-283.
【29】Rardin, R. L. (1998), Optimization in Operations Research, Prentic -Hall Internal, Inc.
【30】Rapoport, A. (1968), Carl Von Clausewitz On War, Penguin Classics.
【31】Satty, T. L. (1977),“A Scaling Method for Priorities in Hierarchical Structures.”Journal of Mathematical Psychology, Vol. 15, pp. 234-281.
【32】Saaty, T. L. (1990),“How to Make a Decision: The Analytic Hierarchy Process.”European Journal of Operational Research, Vol. 48, pp. 9-26.
【33】Sedgewick, R. (1988), Algorithm, Addision-Wesley Publish Company, Inc.
【34】Slaughter, R. A. (1996),“Foresight Beyond Strategy: Social Initiatives
by Business and Government.”Long Range Planning, Vol. 29, No. 2, pp. 156- 163.
【35】Taha, H. A. (1997), Operations Research An Introduction, Prentic -Hall Internal, Inc.
【36】Taillard, E. D. (1995),“Comparison of iterative searches for the quadratic assignment problem.”Location Science, Vol. 3, No. 2, pp. 87-105.
【37】Winston, W. L. (1991), Mathematic Programming Application and Algorithm, Pws-Kent Publishing Company, Boston.
【38】Wrangham, R. (1999),“Is Military Incompetence Adaptive.”Evolution and Human Behavior, Vol. 20, No. 1, pp. 3-17.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top