|
Reference [1] Allgower, E. L., and Chien, C. S., Continuation and Local Perturbation for Multiple Bifurcations, SIAM J. Sci. Statist. Comput. Vol.7, No.4, 1265-1281, October (1986). [2] Atkinson, K. E., The Numerical Solution of A Bifurcation Problem, SIAM J. Numer. Anal., 14(4), 584-599, (1977). [3] , K., and Mei Z., Mode Interactions of an Elliptic System on the Square, International Series of Numerical Mathematic, Vol. 104, , Verlag Basel, (1992). [4] Brezzi, F., Rappaz, J. and Raviart, P. A., Finite Dimensional Approximation of a Bifurcation Problem, Numer. Math., 36, 1-25, (1980). [5] Crandall, M. G., and Rabinowitz, P. H., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press, New York, 1-35, (1977). [6] Crandall, M. G., and Rabinowitz, P. H., Bifurcation from Simple Eigenvalue, J. Funct. Anal., 8, 321-340, (1971). [7] Crandall, M. G., and Rabinowitz, P. H., Bifurcation, Perturbation of Simple Eigenvalues, and Linearized Stability, Archive for rational Mech. Analysis, 52, 161-180, (1973). [8] Crandall, M. G., and Rabinowitz, P. H., Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edited by Bardos, C. and Bessis, D., NATO Advanced Study Institute Series, (1979). [9] Chien C. S., Mei Z., and Shen C. L., Numerical Continuation at Double Bifurcation Points of a Reaction Diffusion Problem, International Journal of Bifurcation and Chaos, Vol. 8, No.1, 117-139, (1997). [10] Isaacson and Keller, H. B., Analysis of Numerical Methods. Wiley, New York, (1965). [11] Iooss, G.. and Joseph, D.D., Elementary Stability and Bifurcation Theory, Spring-Verleg(1989). [12] Jepson A. D. and Spence A., Numerical Methods for Bifurcation Problems, Sate of the Art in Numerical Analysis, edited by A. Iserles, MJD Powell(1987). [13] Keller, H. B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited by Rabinowitz, P.H., Academic Press, 359-384, (1977). [14] Keller, H. B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag, (1987). [15] , M. and Holodniok, M., Nonlinear Dynamics Systems Bifurcation, Continuation Methods, Period Solutions, Lecture Notes in Mathematics, edited by Dold A. and Eckmann B., Vol.1192, Springer-Verlag, (1986). [16] , M. and Marek, M., Computational Methods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York, (1983). [17] , T., Mittelmann, H. D. and Weber, H.(eds), Numerical Methods for Bifurcation Problems, , Basel, (1984). [18] Reiss, E. L., Bauer, L. and Keller, H. B., Mutiple eigenvalues lead to secondary bifurcation, SIAM J. Appl. Math. 17, 101-122, (1975).
|