壹、中文部分
吳芝儀、李奉儒(1995)譯:質的評鑑與研究。新店:桂冠。原作為Michael Q.Patton所著Qualitative Evaluation and Research Methods。
吳讓泉(1993):數學的智慧之光。台北市:國際村文庫書店。
林原宏、游自達(1993):國小高年級學生在乘除文字題列式上的策略與概念之研究。載於中華民國第十屆科學教育學術研討會論文彙編(349-399)。台北:國立台灣師範大學。
教育部台灣省國民學校教師研習會出版(2000):國小數學教材分析-長度。台北:作者。
黃偉鵑(1994):小學生運算錯誤類型之研究。國立政治大學教育研究所碩士論文。黃瑞琴(1997):質的教育研究方法。台北市:心理出版社。
蕭阿全(1984):國小學童智能、學習成就、學習態度、人際關係諸因素之研究。輔導月刊,20(2),26-28。謝展文(2000):直覺法則對於數學及科學學習的影響--以國小四,五,六年級為對象。國立台灣師範大學科學教育研究所碩士論文(未出版)。魏麗敏(1989):國小學生數學焦慮、數學態度與數學成就之關係暨數學學習團體諮商之效果研究。國立台灣師範大學教育心理與輔導研究所碩士論文(未出版)。
羅增儒、鐘湘湖(2000):直覺探索方法。新竹市:凡異文化事業有限公司。
熊召弟、王美芬、段曉林、熊同鑫(1996)譯:科學學習心理學。台北市:心理出版社。原作為S.M. Glynn R.H.Yeany所著的The Psychology of Learning Science。
貳、英文部分
Bell, A., Fischbein, E., & Greer, B.(1984). Choice of operation in verbal arithmetic problems: the effects of number size, problem structure and contex. Educational studies in Mathematics, 15, 129~147.
Carey, S.(1992).The origin and evaluation of everyday concepts. In R.N. Giere (Ed).Minnesota studies in the philosophy of science,15(pp.89-128).Minneapolies, MN:University of Minnesota Press.
Fischbein, E.,Tirosh, P.,& Melamed. U.(1981).Is it possible to measure the intuitive acceptance of mathematical statement?Educational Studies in Mathematics, 12, 491-512.
Fischbein, E. Deri, M., Nello, M. S., & Marino, M.S.(1985).The role of implicit models in solving decimal problems in multiplication and division. Journal for Research in Mathematics Education, 16, 3~17.
Gunstone, R.F., & White, R.T.(1981).Understanding of gravity. Science Education, 65, 291-299.
Hart, K. M., Brown, M., Kerslake, D., Kuchemann, D., Johnson, D., Ruddock, G., & McCartney, M.(1980).Secondary school children’s understanding of mathematics. A report of the mathematics component of the concepts in secondary mathematics and science programme. London:Chelsea College of Science and Technology.
Hilbert, D.(1925/1964). On the infinite. In P. Benacerrof & H. Putnam (Eds), Philosophy of mathematics. New York: Cambridge University Press.
Inhelder, B., & Piaget, J.(1958).The growth of logical thinking: From childchood to adolescence. New York: Basic Books.
Nesher, P.(1986). Are mathematical understanding and algorithmic performance related? For the Learning of Mathematics, 6, 2-9.
Piage, J.(1969).The child’s conception of time. NY:Basic Book.
Piaget, J., Inhelder, B., & Szeminska, A.(1960).The Child’s conception of geometry. London: Routledge & Kegan Paul.
Piaget, J., & Inhelder, B.(1974).The child’s construction of quantity. London: Routledge & Kegan Paul.
Pitkethly, A. & Hunting, R(1996).A review of recent research in the area of initial fraction concepts. Educational Studies in Mathematics, 30, 5-38.
Stavy, R., Strauss, S., Orpaz, N., & Carmi, G.(1982).U-shaped behavioral growth in ratio comparisons, or that’s funny I would not have thought you were U-ish. In S. Strauss & R. Stavy(Eds.), U-shaped behavioral growth(pp.11-36). New York:Academic Press.
Stavy, R. & Tirosh, D.(1996).Intuitive roles in science and mathematics: The case of “More of A-More of B”. International Journal of Science Education,18(6), 653-667.
Stavy, R. & Tirosh, D.(2000).How students (mis)understand science and mathematics:intuitive rules.New York:Teachers College Press.
Tall, D. O.(1981). Intuition of infinity. Mathematics in School, 10(3),30-33.
Tirosh, D(1985).The intuition of infinity and its relevance for mathematical education. Unpublished doctoral thesis. Tel Aviv University, Israel.(in Hebrew)
Tirosh, D., & Stavy R.(1996).Intuitive rules in science and mathematics: The case of ”everything can be divided by two ”.International Journal of Science Education, 18, 669-683.
Tirosh, D., & Stavy R.(1999).The intuitive roles theory and inservice teacher education. In Fou-Lai Lin(Ed.),Proceedings of the 1999 International Conference on Mathematics Teacher Education. Department of Mathematics, National Taiwan Normal University: Taipei, Taiwan, 205-225.
Tirosh, D., & Stavy R.(1999).Intuitive rules: A way to explain and predict students’ reasoning. Educational Studies in Mathematics, 38, 51-66.
Tirosh, D., & Tsamir, P.(1996). The role of representations in students’ intuitive thinking about infinity. International Journal of Mathematics Education in Science and Technology, 27, 33-40.