跳到主要內容

臺灣博碩士論文加值系統

(34.236.192.4) 您好!臺灣時間:2022/08/17 17:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖經宏
研究生(外文):Ching-hung Liao
論文名稱:建構取向教學模式對國小學童光學相關概念之影響
論文名稱(外文):The Impacts of Constructivistic Instructional Model on Children’s Learning about Optics Related Concepts
指導教授:陳龍川陳龍川引用關係
指導教授(外文):Long-chuan Chen
學位類別:碩士
校院名稱:國立花蓮師範學院
系所名稱:國小科學教育研究所
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:169
中文關鍵詞:Driver and Oldham教學模式光學相關概念概念改變本體樹述詞分析技術
外文關鍵詞:Driver & Oldham’s Instructional ModelOptics Related ConceptsConceptual changeOntologyVerbal Content Analysis Technique
相關次數:
  • 被引用被引用:20
  • 點閱點閱:646
  • 評分評分:
  • 下載下載:131
  • 收藏至我的研究室書目清單書目收藏:5
本研究旨在探討建構取向教學模式對學童光學相關概念學習之影響。研究對象為花蓮縣吉安國小五年級學童,隨機挑選一班(28人)為實驗組,接受Driver and Oldham教學模式,另一班(28人)為對照組,接受一般傳統教學模式,進行四週之實驗教學。兩組學童在教學前後均接受「光學相關概念測驗」,為求深入瞭解不同教學模式對學童光學相關概念之影響,將學童依照「光學相關概念測驗」前測成績分為高、中、低三種程度,從中各抽取2位學童,共12位學童,在教學前後接受「光學相關概念問卷」的晤談。
資料分析分為四個部分,第一部份是針對兩組學童「光學相關概念測驗」後測成績,以前測成績為共變數進行共變數分析。第二部分是對兩組學童「光學相關概念問卷」述詞使用的次數,進行曼-惠二氏U Test。第三部份是計算兩組學童「光學相關概念測驗」成績與「光學相關概念問卷」述詞使用次數之Pearson相關係數。第四部分是針對兩組學童「光學相關概念測驗」的理由陳述部分,以概念改變之歷程圖加以分析。
歸納資料分析的結果,本研究的重要發現有:
1. 接受Driver and Oldham教學模式的學童在「光學相關概念測驗」的成績,顯著地優於接受一般傳統教學模式的學童(F=116.515,p<.01)。
2. 接受Driver and Oldham教學模式的學童在「光學相關概念問卷」中物質述詞的使用次數顯著地較接受一般傳統之教學模式的學童少(U=7.0,p<.05),而事件述詞的使用次數則顯著地較接受一般傳統之教學模式的學童多(U=5.0,p<.05)。
3. 兩組學童「光學相關概念測驗」的成績與「光學相關概念問卷」述詞的使用次數有顯著的相關:(1)物質述詞和成績呈現負相關(r=-.685,p<.01)(2)事件述詞和成績呈正相關(r=.570,p<.05)(3)CBI述詞和成績呈現正相關(r=.775,p<.01)。
4. 兩組學童在「光學相關概念測驗」的理由陳述有所不同:(1)接受Driver and Oldham教學模式的學童較能以較豐富的科學語彙來描述與解釋自然現象(2)接受Driver and Oldham教學模式的學童較能改變錯誤述詞使用的情形,重新學習使用正確述詞來描述與解釋自然現象(3)接受Driver and Oldham教學模式的學童較會發生概念改變或產生認知上的衝突。
研究者依據上述研究結果,對光學相關概念的教學與未來相關研究提出若干建議。
This study aims to investigate the impacts of constructivistic instructional model on children’s learning about optics related concepts.
Subjects were the fifth graders of Chi-An Elementary School in Hualien County. One class of 28 students was randomly assigned as the experimental group; another class of 28 students was randomly assigned as the control group. The experimental group was treated with Driver and Oldham’s instructional model while the control group was taught with traditional instructional model. The duration of treatment was tweleve class periods. Before and after the treatment, children of both groups were administered an achievement test called "Test of Optics Related Concepts". In addition, students of both groups were divided into three levels, namely high, medium, and low based on their pretest scores of "Test of Optics Related Concepts", and two students were selected from each level of both groups for interview before and after the treatment. The interview proceeded in accordance with a questionnaire called "Questionnaire for Interview about Optics Related Concepts".
Data analyses included (1) a one-way ANCOVA to examine the difference of students'''' posttest scores on "Test of Optics Related Concepts" between two groups, (2) a Mann-Whitney U-test to examine the usage of students'''' verbal frequencies collected from "Questionnaire for Interview about Optics Related Concepts", (3) a Pearson correlation coefficient to investigate the relationship between students'''' scores on "Test of Optics Related Concepts" and verbal frequencies on "Questionnaire for Interview about Optics Related Concepts", and (4) a schematic depiction of conceptual change to explore students'''' conceptual development.
According to the data analyses described above, important conclusions of this research are reached and stated as below:
1. The average score on "Test of Optics Related Concepts" for the experimental group students is significant higher than that for the control group (F=116.515, p<.05).
2. Matter verbal frequencies on "Questionnaire for Interview about Optics Related Concepts" for the experimental group are significant fewer than that for the control group (U=7.0, p<.01); event verbal frequencies for the experimental group are significant more than that for the control group (U=5.0, p<.05).
3. Scores on "Test of Optics Related Concepts" show the significant correlations with verbal frequencies on "Questionnaire for Interview about Optics Related Concepts". Matter verbal frequencies show a negative correlation with test scores (r=-.685, p<.01); event verbal frequencies show a positive correlation with test scores (r=.570, p<.05); and CBI verbal frequencies show a positive correlation with test scores (r=.775, p<.01).
4. Results of the schematic depiction of conceptual change show that (1) students of experimental group used scientific descriptions more plenty; (2) students of experimental group could aware and correct their mistaken verbals; and (3) students of experimental group could occur conceptual changes or occur the cognitive conflict more frequent.
第一章 緒論
第一節 研究背景與動機 1
第二節 研究目的與問題 4
第三節 名詞解釋 5
第四節 研究範圍與限制 7
第二章 文獻探討
第一節 學童光學相關的迷思概念 9
第二節 概念改變的理論 17
第三節 Chi本體論分析學童光學相關的迷思概念 32
第四節 概念改變的教學策略 34
第五節 Driver and Oldham教學模式 40
第三章 研究方法
第一節 研究對象 47
第二節 研究假設 48
第三節 研究設計 50
第四節 研究工具 53
第五節 研究流程 65
第六節 資料處理與分析 67
第四章 研究結果與討論
第一節 接受不同教學模式之後,學童光學相關概念之學習成就的結果與討論 75
第二節 接受不同教學模式之後,學童光學相關概念之本體樹的結果與討論 81
第三節 「光學相關概念之學習成就」和「光學相關概念之本體樹」兩者之相關性的結果與討論 94
第四節 接受不同教學模式之後,學童光學相關概念之歷程的結果與討論 97
第五章 結論與建議
第一節 結論 119
第二節 建議 122
參考文獻
中文部分 125
英文部分 127
附錄
附錄一 Driver and Oldham教學模式的教學設計 131
附錄二 一般傳統教學模式的教學設計 141
附錄三 Driver and Oldham教學模式檢核表 146
附錄四 光學相關概念測驗 147
附錄五 光學相關概念問卷 151
附錄六 Driver and Oldham教學模式檢核表的互動資料 152
附錄七 光學相關概念問卷的逐字稿 161
中文部分
1. 王晉基、郭重吉(民81)。利用選擇題的方式來探求國中學生對「光」的迷思概念之研究。彰師科學教育,73-92。
2. 王龍錫(民83)。國小學童光與視覺之概念發展研究(Ⅱ)。台北市:行政院國家科學委員會(NSC81-0111-S153-01-N)。
3. 江新合(民82)。建構主義式教學策略在國小自然科教學的應用模式。國立屏東師範學院「國小自然科學教育」學術研討會實錄,3-20。
4. 余民寧(民86)。教育測驗與評量:成就測驗與教學評量。台北市:心理。
5. 吳慶軍(民87)。概念表徵與教學策略對原住民兒童光學概念的認知及其心智表徵型態的影響。台北市:河馬文化出版社。
6. 林靜雯(民89)。由概念改變及心智模式初探多重類比對國小四年級學生電學概念學習之影響。國立台灣師範大學科學教育研究所碩士論文。
7. 邱美虹(民89)。概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
8. 邱美虹、周金城、林靜雯(民89)。以述詞分析法探究認知師徒制的教學成效。第十六屆科學教育學術研討會短篇論文彙編,63-69。
9. 國立臺灣師範大學學術研究委員會(民81)。教學評量研究。台北市:五南圖書出版公司。
10.張美玉(民85)。歷程檔案評量在建構教學之應用-一個科學的實徵研究。教學科技與媒體,27,31-46。
11.張紹勳、張紹評、林秀娟(民89)。SPSS for Windows統計分析:初等統計與高等統計(下冊)。台北市:松崗。
12.教育部(民89)。國民教育九年一貫課程綱要。教育部。
13.郭金美(民88)。建構主義教學方法一影響學童光學概念學習教學模式的研究。國立嘉義師範學院學報,13,157-201。
14.郭重吉(民81)。從建構主義的觀點探討中小學數理教學的改進。科學發展月刊,5,548-568。
15.陳忠志(民77)。大一學生物理學錯誤概念之研究(光學部分)。台北市:行政院國家科學委員會。(NSC-77-0111-S017-005-D)。
16.陳瓊森、許榮富(民79)。科學認知結構的表徵與科學概念學習過程的機制。台北市:師大演講稿。
17.黃湘武、黃寶鈿(民78)。學生對投影光及光性質之概念研究。第五屆科學教育學術研討會論文彙刊,233-262。
18.黃瓊蓉編譯(民89)。心理與教育統計學。學富文化。
19.廖雯玲(民88)。建構主義取向教學法對國小六年級學生在「地球運動」單元學習之影響。國立台南師範學院國民教育研究所碩士論文。
20.盧莉敏、王國華(民87)。國中生物科施行概念改變教學策略之研究。第十四屆科學教育研討會論文彙編,417-421。
英文部分
21. Anderson, B. & Karrquist, C. (1983). How SwedishPupils, Aged 12-15, Understand Light and Its Properties. European Journal Science Education, 5(4), 387-402.
22. Anderson, C. W., & Smith, E. L. (1986). Children’s Conceptions of light and color: Understanding the Role of Unseen Rays. (ERIC Document Reproduction Service NO. ED 270 318).
23. Arnaudin, Mary. W., & Mintzes, Joel. J. (1985). Students’ Alternative Conceptons of the Human Circulatory System: A Cross-age Study. Science Education, 69(5), 721-733.
24. Carey, S. (1985). Conceptual change in childhood. The MIT press, Cambridge, Massachusetts.
25. Champagne, A. B., Gunstone, R. & Klopfer, L. (1985). Effecting changes in cognitive structures among physics students. In L. West and A. Pines(eds.), Cognitive Structure and Conceptual Change. London: Academic Press.
26. Chi, M. T. H. (1992). Conceptual change within and across ontological categories: examples from learning and discovery in science. In R. Giere(ed.), Cognitive models of science: Minnesota studies in the philosophy of science, 129-186. Minneapolis: University of Minnesota Press.
27. Chi, M. T. H., Slotta, J. D., & deLeeuw, N. (1994). From things to processes: a theory of conceptual change for learning science concepts, Learning and instruction, 4, 27-43.
28. Chi, M. T. H. (1997). Creativity: Shifting across ontological categories flexibly. In T. B. Ward. S. M. Smith. & J. Vaid. (eds.), Creative thought: An investigation of conceptual structures and process, 209-234.
29. Driver, R., Guesne, E., & Tiberghien, A. (1985). Children’s Ideas In Science. Philadelphia: Open University Press.
30. Driver, R., & Oldham, V. (1986). A constructivist approach to curriculum development in science. Studies in Science Education, 13, 105-122.
31. Driver, R., et al., (1994). Constructing Scientific Knowledge in the Classroom. Educational Researcher, 23 (7), 5-12.
32. Eaton, J. F., Anderson, C. W. & Smith, E. L. (1983). Students’ Misconceptions Interfere with Learning: Case studies of Fifth-Grade Students. Michigan State University.
33. Ferrari, M. & Chi, M. T. H. (1998). The Natural of Naïve Explanations of Natural Selection. International Journal of Science Education, 20(10), 1231-1256.
34. Feher, E. & Rice, K. (1988). Shadows and Anti-Images: Children’s Conceptions of Light and Vision.Ⅱ. Science Education 72(5), 637-649.
35. Fetherstonhaugh, T. & Happs, J. & Treagust, D. (1987). Student Misconceptions about light: A Comparative Study of Prevalent Views Found in Western Australia, France, New Zealand, Sweden and the United States. Research in Science Education, 17, 139-148.
36. Fetherstonhaugh, T. & Happs, J. (1988). Countering Fundamental Misconceptions about Light an Analysis of Specific Teaching Strategies with Years 8 Students. Research in Science Education, 18, 211-219.
37. Fetherstonhaugh, T. & Treagust, D. (1992). Students’ Understanding of light and its properties: teaching to engender conceptual change. Science Education 76(6), 653-672.
38. Flavell, J. H. (1976). Metacognition aspects of problem-solving. In L. B. Resnick(eds.), Perspectives on the development of memory and cognition. Hillsdale, NJ: Lawrence Erlbaum Associates.
39. Guesne, E. (1985). Light. In R. Driver, E, Guesne. & A. Tiberghien(eds.), Children’s Ideas in Science, 10-32. England: Open University Press.
40. Hand, B. & Treagust, D. F. (1991). Student Achievement and Science Curriculum Development Using a Constructive Framework. School Science and Mathematics, 91(4), 172-176.
41. Inhelder, B. & Piaget, J. (1958). The Growth of Logical Thinking: From Childhood to Adolescence. A Parsons & S. Milgram(trans). New York: Basic Books.
42. Karrqvist, Universitet, & Anderson. (1983). How Swedish Pupils, Age 12-15, Understand Light and Its Properties. European Journal Science Education, 5(4), 387-402.
43. Kass, H. & Raven, R. (1992). Faculty Teaching Perfprmance Evaluation in Higher Science Education: Issues and Implications(A “Cross-Cultural” Case Study). Science Education, 76(6), 673-684.
44. Klausmeier, Herbert J. (1985). A Process Guide for School Improvement. (ERIC Document Reproduction Service NO. ED 258 337).
45. Nussbaum, J. & Novick, S. (1982). Alternative frameworks, conceptual conflict and accommodation: toward a principal teaching strategy. Instructional Science, 11, 183-200.
46. Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: toward a theory of conceptual change. Science education, 66(2), 211-227.
47. Ramirez, R., Anne, M., & John, C. (1998). In search of dissonance: the evolution of dissonance in conceptual change theory. Paper presented at the Annual meeting of the National Association for Research in Science Teaching, San Diego, CA, 19-22.
48. Rice, K. & Feher, E. (1987). Pinholes and Images: Children’s Conceptions of Light and Vision.Ⅰ. Science Education, 71(4), 629-639.
49. Rice, K. & Feher, E. (1988). Shadows and Anti-Images: Children’s Conceptions of Light and Vision.Ⅱ. Science Education, 72(5), 637-649.
50. Saxena, A. B. (1991). The understanding of the properties of light by students in India. International Journal of Science Education, 13(3), 283-289.
51. Slotta, J. D., Chi, M. T. H. & Joram, E. (1995). Assessing Students’ Misclassifications of Physics Concepts: An Ontological Basis for Conceptual Change. Cognition and Instruction, 13(3), 373-400.
52. Slotta, J. D., Chi, M. T. H. & Resnick, L. B. (2000). Naïve Physics Reasoning: A Commitment to Substance-Based Conceptions. Cognition and Instruction, 18(1), 1-34.
53. Stead, B. & Osborne, R. (1980). Exploring science student’s concepts of light. Australian Science Teachers’ Journal, 26, 84-90.
54. Strike, K. A., & Posner, G. J. (1992). A revisionist theory of conceptual change. In R. A. Duschl & R. J. Hamilton(eds.), Philosophy of science, cognitive psychology, and educational theory and practice, 147-176. Albany, NY: State University of New York Press.
55. Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.
56. Tiberghien, A. (1994). Modeling as a basis for analyzing teaching-learning situations. Learning and Instruction, 4, 71-87.
57. Vosniadou, S. (1991). Conceptual development in astronomy. In S. Glynn, R. Yeany, & B. Brotton(eds.), The psychology of learning science. NJ : Erlbaum, 149-177.
58. Werner, H. & Kaplan, B. (1963). Symbol formation: An organismic-developmental approach to language and the expression of thought. New York: Wiley.
59. White, R. T. (1994). Commentary: Conceptual and conceptional change. Learning and Instruction, 4, 117-121.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top