跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 21:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡妙倩
研究生(外文):Maio-Chien Chien.
論文名稱:國小五年級個人化文意數學佈題教學之個案研究
論文名稱(外文):Case Research of Mathematics Problem Posing about Personalized Context in an Elementary fifth-grade
指導教授:潘宏明潘宏明引用關係
學位類別:碩士
校院名稱:國立花蓮師範學院
系所名稱:國小科學教育研究所
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:218
中文關鍵詞:個人化文意數學文字題國小數學科
外文關鍵詞:personalized contextmathematics problemelementary mathematic class
相關次數:
  • 被引用被引用:7
  • 點閱點閱:396
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:7
論文摘要
本研究旨在描述個案教師在國小五年級數學科進行個人化文意數學文字題教學之歷程,同時記錄分析此歷程中所遭遇到的困難及解決之道及學生在歷經此種教學之後對他們的影響,個案教師的成長也將在本文中討論。本研究採用個案研究的方式,研究者經由個案教師實際的教學與教學省思札記、研究者手札、訪談學生、訪談個案教師及其他相關的資料蒐集,持續對所發現的結果進行分析。
研究結果顯示:在事前充分規劃教學準備及活動流程的設計之下,個人化文意數學文字題教學有其正向的意義,適當的教學策略可引起學生的學習興趣及促進學生的思考,讓學生可以將生活經驗融入數學題目中。在教師成長方面,改變了個案教師以教學為中心及灌輸知識的教學方式,更是積極的付諸行動,提供學生另外一種學習的方式,在其過程中提升個案教師的教學能力。
關鍵字:個人化文意、數學文字題、國小數學科。
Abstract
The major purpose of this study is to investigate the feasibility of implementing mathematics problem posing of personalized context in an elementary mathematic class. This study intends to answer the following questions : First, what is the process of implementing mathematics problem posing of personalized context ? Second, what obstacles and limitation are there during the implementation ? Third, how students react during the research time and what their performance is ? Forth, how this study impacts upon the case teacher’s professional development ?
The methods of collecting data included classroom observation, interviewing the case teacher and students ,the reflective journal. Data collection and result analysis were also proceeded in accordance with triangulation principles. Throughout the research , the collected data was used in order to improve teaching methods and skills, as well as to investing student and skills, as well as to investigate students’ interest in learning.
The results of this study indicate that the implementation of mathematics problem posing of personalized context in an elementary mathematic class is feasible. Selecting suitable strategies could help students . Researcher found that time constraints 、group setting ‘was the major obstacle to the implementation. With regard to the students’ learning, the results of this study reveled that mathematics problem posing of personalized context in an elementary mathematic class not only could arouse students’ interest in learning, but also help students realize that our daily life is full of mathematics. With regard to the case teacher’s professional growth, the case teacher’s teaching belief and teacher-centered teaching methods move more and more toward constructivist .
Key words: personalized context 、mathematics problem、 elementary mathematic class
目錄
第一章 緒論
第一節 研究動機………………………………………………………………1
第二節 研究目的與待答問題…………………………………………………3
第三節 名詞解釋………………………………………………………………3
第四節 研究範圍與限制………………………………………………………4
第二章 文獻探討
第一節 數學文字題的解題歷程………………………………………………7
第二節 數學文字題佈題之探討………………………………………………21
第三節 個人化文意佈題模式之探討…………………………………………31
第三章 研究方法
第一節 研究架構與理念………………………………………………………39
第二節 研究場域………………………………………………………………42
第三節 研究流程………………………………………………………………43
第四節 研究對象………………………………………………………………45
第五節 研究工具………………………………………………………………46
第六節 資料蒐集與分析………………………………………………………49
第四章 研究結果與討論
第一節 個案教師落實個人化文意數學佈題之教學歷程……………………53
第二節 個人化文意數學佈題教學所遇到的困境與解決之道………………82
第三節 個人化文意數學佈題教學對學生學習的影響………………………95
第四節 個案教師在落實個人化文意佈題教學的歷程中獲得的自我成長…105
第五章 結果與建議
第一節 結論……………………………………………………………………113
第二節 建議……………………………………………………………………116
參考文獻
一、中文部分……………………………………………………………………119
二、英文部分……………………………………………………………………124
附錄
附錄一、自製教具圖……………………………………………………………133
附錄二、教案初步設計…………………………………………………………134
附錄三、個案教師訪談資料……………………………………………………156
附錄四、學生的訪談資料……………………………………………………168
附錄五、教師檢核表……………………………………………………………214
附錄六、學生學習歷程記錄……………………………………………………216
附錄七、研究者手札……………………………………………………………218
表目次
表2-1 國內外數學文字題分類的研究……………………………………………………10
表2-2 問題解決模式………………………………………………………………………18
表2-3 影響文字題的因素…………………………………………………………………19
表2-4 數學教學的趨勢……………………………………………………………………26
表2-5 佈題的相關研究……………………………………………………………………29
表2-6 個人化文意與解題的研究…………………………………………………………34
表3-1 研究流程圖表………………………………………………………………………44
表3-2 資料的編碼…………………………………………………………………………51
表4-1 台北縣╳╳國小九十學年度第一學期五年級數學科預定教學計畫……………54
表4-2 數學文字題分析表…………………………………………………………………58
表4-3 個案教師在90年 9月28日的上課流程…………………………………………66
表4-4 個案教師在90年11月16日的上課流程…………………………………………71
表4-5 個案教師在90年12月28日的上課流程…………………………………………76圖目次
圖2-1 Ausubel解決問題模式……………………………………………………………13
圖2-2 Lester數學解題「認知─後設認知的模式」…………………………………14
圖2-3 數學解題訊息流向圖……………………………………………………………16
圖2-4 問題解決流程圖…………………………………………………………………17
圖3-1 研究架構圖………………………………………………………………………40
圖3-2 學校配置圖………………………………………………………………………42
圖3-3 教室平面圖………………………………………………………………………43
圖3-4 待答問題與資料蒐集……………………………………………………………50
圖4-1 第一階段教學流程圖……………………………………………………………65
圖4-2 第二階段教學流程圖…………………………………………………………71
圖4-3 第三階段教學流程圖……………………………………………………………76
圖4-4 個人化文意數學佈題教學之可行方式…………………………………………81
圖4-5 書寫問題版的流程……………………………………………………………83
圖4-6 第一階段小組討論座位安排圖…………………………………………………86
圖4-7 第二階段小組討論座位安排圖…………………………………………………87
圖5-1 個人化文意數學佈題教學之可行方式………………………………………114
參考文獻
一、中文部分
丁惠琪(民89)。合作學習應用在國小數學教學之探究。國立台北師範學院課程與教學研究所碩士論文,未出版。
古明峰(民83)。應用問題的解題理論與教學。竹縣文教,8,91-98。
古明峰(民86)。加減法應用題語文知識對問題難度之影響之研究。八十六學年度教育學術研討會。國立花蓮師範學院印。
古明峰(民88)。加減法文字題語意結構、問題難度及解題關係之探討。新竹師院學報,12,1-25。
李嘉珍(民89)。協同數學成長團體下之教師佈題-以三位二年級教師為例。國立新竹師範學院國銀教育研究所碩士論文,未出版。
周幸儀、梁淑坤(民83)。國小四年級乘除法文字題的擬題與解題的初步調查。載於中華民國第十屆科學教育學術研討會論文彙編(401-414)。國立台灣師範大學印。
林碧珍(民78)。國小學生數學解題的表現及其相關因素的研究。國立台灣師範大學數學教育研究所碩士論文,未出版。
林文生(民85)。一個國小數學教師佈題情境及其對學生解題交互影響之分析研究。國立台北師範學院國民教育研究所碩士論文,未出版。
林文生和鄔瑞香(民86)。建構主義在國小數學科教學試煉。國教世紀,178,52-55。
林文生和鄔瑞香(民89)。數學教育的藝術與實務-另類教與學。台北:心理出版社。
林生傳(民89)。教育心理學。台北:五南圖書出版公司。
林清山(民84)。教育心理學-認知取向。台北:遠流出版公司。
林美惠(民86)。題目表徵形式與國小二年級學生加減法解題表現之研究。國立嘉義師院學院國民教育研究所碩士論文,未出版。
林宏熾(民85)。 情境教學策略。國立彰化師範大學特教中心舉辦,學習障礙有效教學策略研討會專輯。5-11。
林佩璇、黃政傑(民85)。合作學習。台北:五南出版社。
侯鳳秋(民87)。適性CAI中個人化文意範例對國小學生解數學文字題之影響。國立花蓮師範學院國民教育研究所碩士論文(未出版)。
唐淑華(民84)。語文理解能力對解答數學應用題能力之實驗研究。八十四學年度師範學院教育學術論文發表會。國立屏東師範學院印。
梁淑坤(民83)。「擬題」的研究及其在課程的角色。國民小學數學科新課程概說(低年級)。台北:台灣省國民學校教師研習彙編。
梁淑坤(民84)。師範生擬題行為之研究。國科會補助研究計畫的成果報告。(NSC 83-0111-S-023-007,NSC 84-2511-023-001).
梁淑坤(民85)。從佈題探告討數學科教科書的評鑑。教師之友,37(4),23-28。
梁淑坤(民88)。從擬題研究提出數學教學建議。載於高雄市政府公務人力資源發展中心(編),新典範數學(184-220)。高雄:高市府人發中心編。
陶惠昭(民87)。從一年級教室看數學教師的佈題。國立嘉義師範學院國民教育國民教育研究所碩士論文,未出版。
陳淑娟(民88)。透過合作行動研究探討一個國小班級的數學討論活動。國立嘉義師範學院國民教育研究所碩士論文,未出版。
陳淑娟和劉通祥(民88)。國小教師進行數學討論活動困難之探討,論文發表於1999「第十五屆科學教育學術研討會」,國立彰化師範大學科教所。
連安青(民84)。我國小學數學實驗課實施之研究。國立台灣師範大學教育研究所碩士論文,未出版。
教育部(民88)。國民教育九年一貫課程綱要草案數學學習領域。數學科研究小組編印。
教育部(民89)。國民中小學九年一貫課程(第一學習階段)暫行綱要。教育部編印。
張春興(民85)。教育心理學。台北:東華書局。
陸正威和王慧豐(民89)。淺談學生數學解題的模式與教學的原則。屏師科學教育,11,33-42。
甯自強(民82)。國小數學科新課程的精神及改革動向-由建構主義的觀點來看。科學教育學刊,1(1),101-108。
黃敏晃(民83)。國民小學數學新課程之精神。國民小學數學科新課程概說(低年級)。台北:台灣省國民學校教師研習彙編。
黃瑞琴(民86)。質的教育研究方法。台北:心理出版社。
楊瑞智(民83)。國小五、六年級不同能力學童數學解題的思考過程。國立台灣師範大學科學教育研究所博士論文,未出版。
劉湘川(民81)。數學科教學策略。載於何福田主編:從學習心理談教學策略(195-212頁)。高雄:文山。
劉芳妃(民87)。合作擬題活動融入國一數學科教學之個案研究。國立高雄師範大學數學教育研究所碩士論文,未出版。
劉祥通和周立勳(民88)。小學數學佈題教學研究-數學寫作活動之研究。國科會專題計畫成果報告。(NSC 88-2511-S-023-003)。
劉祥通、鄔瑞香、黃瓊儀(民89)。從學生數與量部分的數學寫字分析一位國小老師的數學佈題。教育研究資訊,8(4),141-165。
蔡文煥(民90)。兒童日常生活活動和數學使用之調查研究。國立新竹師範學院新竹師院學報,14,215-280。
謝新傳(民89)。談數學科解題教學。中等教育,51(3),102-104。
蕭蓉欣(民91)。國小五年級時間加減法文字題解題教學之研究。國立屏東師範學院數理教育研究所碩士論文,未出版。
鍾靜和朱建正(民84)。國小教師面對數學新課程之因應,國教學報,7,1-16。
鍾靜(民88)。落實小學數學新課程之意圖與學校本位的進修活動。課程與教學季刊,2(1),15-34。
羅素貞(民85)。問題表徵與問題解決。國立屏東師範學院屏東師院學報,9,149-176。
二、英文部分
Anand, P. G., & Ross, S. M. (1987a). Using computer-assisted instruction to personalize arithmetic materials for elementary school children. Journal of Education Psychology, 79(1), 72-78.
Anand, P. G., & Ross, S. M. (1987b). A computer-based strategy for personalizing verbal problems in teaching mathematics. Educational Communications and Technology Journal, 35(3), 151-162.
Ausubel, D. P. & Robinson, F. G. (1969). School Learning. N. Y.: Holt.
Bishop, A. J. & Abreul, G.de (1991). Children’s use of outside-school knowledge to solve Mathematics problems in school. The Proceedings 15th PME Conference, Vol, 1, 128-135. Italy.
Butt, T. (1980). Posing problem properly. In S., Krulik & R. E., Rey (Eds.), Problem posing in school mathematics. (pp.23-33). The National Council of Teachers of Mathematics, INC.
Briars, D. J., & Larkins, J. H. (1984). An integrated model of skill in solving elementary word problems. Cognition and Instruction, 1, 245-296.
Brownell, W. A. (1942). Problem solving. In N. B. Henry (Ed.), The psychology of learning (41stYearbook of the National Society for the Study of Education, part 2)(pp.415-443). Chicago: University of Chicago Press.
Bogdan, R. C., & Biklen, S.K. (1982).qualitative research for education : An introduction to the theory and methods. Boston: Allyn and Bacon.
Caldwell, J. H., & Goldin G.A. (1987). Variables affecting word problem difficulty in secondary school mathematics. Journal for Research in Mathematics Education, 18(3), 17-196.
Capenter, T. P. (1985). Learning to add and subtract. In E. A. Silver. (Eds.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp.17-37).New Jersey: Lawrence Erlbaum associates publishers.
Carraher, T. N. (1988). Street mathematics and school mathematics. The Proceedings of 12th PME Conference, Vol. 1. 1-23. Hungary.
Clements, M. A. (1980). Analyzing children’s errors on written mathematical tasks. Education Studies in Mathematics, 11, 1-21.
Cummins, D. D. (1991). Children’s interpretations of arithmetic word problem Cognition and Instruction, 8, 261-289.
Cummins, D. D., Kintsch, W., Reusser, K., & Weimer, R. (1988). The role of understanding in solving word problem. Cognitive Psychology, 20, 405-438.
Davis- Dorsey, J., Ross, S. M., Morrison, G.R. (1991). The role of rewording and context personalization in the solving of mathematical word problems. Journal of Educational Psychology, 83(1), 61-68.
De Corte, E., Verschaffel, L., & De Winn, L. (1985). Influence of rewording verbal problems on children’s problem representations and solution. Journal of Educational Psychology, 77, 460-470.
Dewey, J. (1910). How To Think. Boson: D. C. Health.
Dewey, J. (1916). Democracy and education. N. Y.: Macmillan。
English, L. D., & Graemes, H. (1995). Mathematics education Models and processes. NJ: Lawrence Erlbaum associates(LEA)
Fuson, K. C. (1992). Mathematics education, elementary. In M. C. Alkin (6th Ed.), Erayclopedia of educational research. New York: Macmillan.
Gagné, E. D. (1985). The psychology of school learning . Boston : Little, Boston: Little, Brown and Company.
Ghaleb, M. S. (1992). Performance and solution strategies of Arabic-speaking second-graders in simple addition and subtraction word problems and relations of performance to their degree of bilingualism. Unpublished doctoral dissertation, the university of Wisconsin.
Glaser, R. (1984). Education and thinking: The role of knowledge. America Psychologist 39, 93-104.
Glass, A. L., & Holyoak, K. J. (1986). Cognition. NY: Random House.
Goldin, G. A. (1985). Thinking scientifically and thinking mathematically. A discussion of the paper by Heller and Hungate. In E. A. Silver(Ed.). Teaching and learning mathematical problem solving: Multiple research perspectives (p. 113-122). Lawrence Erlbaum Associates publishers Hillsdale New Jersey.
Gonzales. N. A. (1994). Problem posing: A neglected component in mathematics courses for prospective elementary and middle school teachers. School Science and Mathematics, 94(2), 78-84.
Gonzales, N. A. (1998). A blueprint for problem posing. School science&mathematics, 98(8), p488.
Greeno, J. G., & Simon, H. (1988). Problem solving and reasoning. In R. C. Atkinson, R. J. Herrnstein, G. Lindzey, & R. D. Ruth(Eds.), Stevens’ handbook of experimental psychology. (pp.511-587). New York: Willey.
Hayes, J. R. (1989). The complete problem solver. N. J.: Lawrence Erlbaum Associates.
Hegarty, M., Mayer, R. E., & Green, C. E.(1992). Comprehension of arithmetic word problems: Evidence from students eye fixations. Journal of Education Psychology, 84, 76-84.
Kieras, D. (1978). Beyond pictures and words: Alternative information-processing model for imagery effects in verbal memory. Psychological Bulletin, 85(3), 532-554.
Kilpatrick, J. (1978). Variable and methodologies in research on problem solving. In L.L. Hattield & D. A. Breadboard (Eds.), Mathematical Problem Solving(pp.7-20). Athens, GA: Georgia Center for the Study of Learning and Teaching Mathematics and the Department of Mathematic Education, University of Georgia.
Kilpatrick, J. (1985). A retrospective account of the past 25 years of research on teaching and learning mathematical problem solving. In E. A. Silver (Ed.). Teaching and learning mathematical problem solving: Multiple Research Perspectives, pp. 1-16. Hillsdale, New Jersey: Lawrence Erlbaum Associates.
Kilpatrick, J.(1987). Problem formulating: Were do good problems come form? In A. H. Schoenfeld (Ed.). Cognitive Science and Mathematics Education (pp.123-147). Hillsdale, NJ: Lawrence Erlbaum Associates.
Kintsch, W., & Greeno, J. G. (1985). Understanding and solving word arithmetic problems. Psychological Review, 92(1), 109-129.
Knifong, J. D., & Burton, G. M. (1985). Understanding word problem. Arithmetic Teacher, 32,13-17.
Kouba, V. L. et al.(1988). Results of the fourth NAEP assessment of mathematics: Measurement, geometry, data interpretation, attitudes, and other topics. Arithmetic Teacher, 35, 10-16.
Lampert, M. (1988). The teacher’s role in reinventing the meaning of mathematical knowing in the classroom. Keyote address for the November 1988 meeting of Psychology of Mathematics Education —North America in DeKalb, Illinois.
Lave, J., (1988). Cognitive proactive. New York: Cambridge University Press.
Lester, K.F(1983). Trends and issues in mathematical problem-solving research. In R. Lesh& M. Landau(Eds.). Acquisition of Mathematics Concepts and Processes. New York: Academic Press.
Lewis, A. B., & Mayer, R. E. (1987). Students’ miscomprehension of relational statements in arithmetic word problem. Journal of Educational Psychology, 79(4), 363-371.
Li, F. L. N. (1992). The effect of superfluous information on children’s solution statements in arithmetic word problem. Journal of Educational Psychology, 79(4), 363-371.
López, C. L., & Sullivan, H. J. (1991). Effects of personalized math instruction for Hispanic students. Contemporary Educational Psychology, 16(1), 95-100.
López, C. L., & Sullivan, H. J. (1992). Effects of In personalized Examples and Personalized Contexts in Computer-Based Adaptive Teaching of Algebra Word Problems. Oregon State University doctoral dissertation.
Lwo, L. S. (1992). Effects of Individualized Examples and Personalized Contexts in Computer-Based Adaptive Teaching of Algebra Word Problems. Oregon State University doctoral dissertation.
Madell, R. (1985). Children’s natural processes. Arithmetic teacher, 32, 20-22.
Mayer, R. E. (1987). Educational psychology: A cognitive approach. Boston, MA: Little, Brown.
Marshall, S. P., Pribe, C.A., & Smith, J. D. (1987). Schema knowledge structure for representing and understanding arithmetic story problem. Arlington, VA: Office of Naval Research.
Muth, K. D. (1991). Effects of cueing on middle-school student’s performance on arithmetic word problems containing extraneous information. Journal of Educational Psychology, 83(1), 173-174.
National Council of Teachers of Mathematics (NCTM)(1980). An Agenda for Action:Recommendations for School Mathematics of the 1980s. Reston, Virginia, NCTM.
National Council of Teachers of Mathematics (NCTM)(1989). Professional standards for teaching mathematics. Reston, VA: Author.
National Council of Teachers of Mathematics (NCTM)(1991) .Curriculum and evaluation standards for school for school mathematics. Reston, VA: Author.
Nesher, P., & Hershkovitz, S. (1994). The role of schemes in two-step problem: Analysis and research findings. Education Studies in Mathematics, 26, 1-23.
Niss (1996). Goals of Mathematics Teaching. In A. J. Bishop et al.(Eds.), International Handbook of Mathematics Education,11-47.
Polya, G. (1945). How to solve it. (2ndED), New York: Doubleday.
Quintero, A. H. (1984). Children’s difficulties with two-step word problems. (ERIC Document Reproduction Service No. ED 242 535)
Reitman, G. (1965). Cognition and thought. New York: Wiley.
Riedesel, C. A. (1990). Teaching elementary school mathematics. Boston: Allyn & Bacon.
Romberg, T. A. (1992). Problematic features of the school a mathematics curriculum. In P. W. Jackson (Ed.), Handbook of research on curriculum. New York: Macmillan.
Ross, S. M.(1984). Matching the lesson to the student: Alternative adaptive designs for individualized learning systems. Journal of Computer-Based Instruction, 11(2), 42-48.
Ross, S. M., McCormick D., Krisak N., & Anand P. (1985). Personalizing concepts: Teacher-managed and computer-assisted models. Journal of Education Communication Technology, 33(3), 169-178.
Saxe, G.B. (1991). Culture and Cognitive Development : Studies in Mathematical Understanding. Hilldale , NJ: Lawrence Erlbaum.
Schoenfeld, A. H. (1985). Mathematical problem solving. NY: Academic Press.
Schoenfeld, A. H. (1994). Mathematical thinking and problem solving. Hillsdale, NJ: Lawrence Erlbaum Associates.
Shalin, V. L., & Bee, N. V. (1985). Structural differences between two-step word problems.( ERIC Document Reproduction Service No. ED 259 949)
Silver, E. A. (Ed.). (1985). Teaching and learning mathematical problem solving: Multiple research perspectives. Hillsdale, NJ: Lawrence Erlbaum Associates.
Silver, E. A. (1987). Foundations of cognitive theory and research for mathematics problem-solving. In A. H. Schoenfeld (ED.), Cognitive science and mathematics education (pp.33-60).New Jersey, NJ: Hillsdale.
Silver, E. A. (1994). On mathematical problem posing. For the Mathematical Problem in a Complex Task Environment: an Exploratory Study. Journal for Research in Mathematics Education, 27(3).
Silver, E. A., Mamona-Downs, J., Leung. S. S., & Kenny, P. A.(1996) .Posing mathematical problems in a complex task environment: An exploratory study. Journal for Research in Mathematics Education, 27(3), 293-309.
Skinner, P. (1990). What’s your problem? Posing and solving mathematical problem, K2. Portsmouth, NH: Heinemann.
Travers & Westbury(1989,edd.). The IEA study of mathematical: analysis of mathematics curricula. Pergamon Press.
Vergnaud, G. (1983). Multiplicative structures. In R. Lesh & M. Landau(Eds.), Acquisition of mathematics concepts and process (pp.127-174). New York: Academic Press.
Webster’s (1979). New universal unabridged dictionary. Second edition. New York, NY: Simon & Schuster.
Yackel, E. & Wheatley, G.H. (1985). Characteristics of problem representation indicative of understanding in mathematics problem solving. Paper presented at the annual meeting of the American Educational Research Association. Chicago, IL.
Yancy, A.V.(1981). Pupil generated diagrams as strategy for solving word problems for elementary mathematics (Journal Announcement: RIEJAN86), Specialist in Education Degree Thesis, University of Louisville.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top