跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 21:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊家和
研究生(外文):Zhuang Jia-He
論文名稱:紋路特徵編碼法於紋路分析之研究
論文名稱(外文):Texture Feature Coding Method for Image Texture Analysis
指導教授:洪明輝洪明輝引用關係
指導教授(外文):Ming-Huwi Horng
學位類別:碩士
校院名稱:南華大學
系所名稱:資訊管理學系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:65
中文關鍵詞:紋路特徵編碼法灰階明亮度相互關係矩陣紋路頻譜交叉-對角線紋路矩陣紋路特徵
外文關鍵詞:Texture feature coding methodGray-level co-occurrence matrixTexture spectrumCross-diagonal texture matrixTexture features
相關次數:
  • 被引用被引用:9
  • 點閱點閱:572
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
本論文介紹一個處理紋路分析的新方法,叫做紋路特徵編碼法。它結合灰階明亮度相互關係矩陣及紋路頻譜的優點。根據紋路特徵編碼法所產生的紋路特徵數統計圖及紋路特徵數相互關係矩陣可以導出許多紋路特徵。在實驗中我們將這個方法與灰階明亮度相互關係矩陣、紋路頻譜,和交叉-對角線紋路矩陣等三種紋路分析方法進行比較,以了解紋路特徵編碼法在分辨紋路影像方面的效能。從實驗結果可知紋路特徵編碼法比較其他三種紋路分析方法,有較佳的正確性且較不易受影像旋轉的影響。
This paper introduces a new texture analysis method named Texture Feature Coding Method (TFCM). This method incorporates with the merits of both the gray-level co-occurrence matrix (GLCM) and texture spectrum (TS) methods. The texture feature number histogram and the texture feature number co-occurrence matrix are generated by TFCM for derived many useful texture feature descriptors. Three texture analysis methods, GLCM, TS, and cross-diagonal texture matrix (CDTM), are used to compare and evaluate the performance with TFCM in discriminating some of Brodatz’s natural textures. The experimental results reveal that the TFCM is superior to other three methods in classification of natural textures, especially in classification of rotated textures.
目錄
書名頁 i
論文口試委員審定書 ii
論文指導教授推薦函 iii
授權書 iv
中文摘要 v
英文摘要 vi
誌謝 vii
目錄 viii
表目錄 x
圖目錄 xi
第一章 導論………………………………………………………...1
第1.1節 研究背景 1
第1.2節 研究目的 2
第1.3節 論文架構 2
第二章 背景知識…………………………………………………...3
第2.1節 紋路影像 3
第2.2節 紋路分析 6
第2.3節 紋路特徵 7
第2.4節 紋路辨別 8
第三章 相關方法……………………………………………….....10
第3.1節 灰階明亮度相互關係矩陣 10
第3.2節 紋路頻譜 19
第3.3節 交叉-對角線紋路矩陣 26
第四章 紋路特徵編碼法………………………………………….36
第4.1節 紋路特徵數的產生 36
第4.2節 紋路特徵數統計圖與紋路特徵數相互關係矩陣 42
第4.3節 計算紋路特徵數的例子 46
第4.4節 紋路特徵計算 49
第五章 實驗結果………………………………………………….52
第5.1節 紋路特徵數統計圖的分辨效能 54
第5.2節 紋路特徵的分辨效能 59
第六章 結論……………………………………………………….62
參考文獻 63
1. R.M. Haralick, “Statistical and structural approaches to texture,” Proc. IEEE, Vol. 67, pp.784-804 (1979).
2. 郭永隆,”多階度的紋路分類及分割系統”, 國立成功大學碩士論文。
3. T. Matsuyama, S.I. Miura, M. Nagao, “Structural analysis of natural textures by Fourier transformation,” Computer Vision Graphics Image Process, Vol. 12, pp. 286-308(1980).
4. Yateen Chitre, Atam P. Dhawan, “M-band wavelet discrimination of natural textures,” Pattern Recognition Vol. 32, pp. 773-789(1999).
5. Chien-Chang Chen, Chaur-Chin Chen, “Filtering methods for texture discrimination,” Pattern Recognition Vol. 20, pp. 783-790(1999).
6. Y.Q. Chen, M.S. Nixon, D.W. Thomas, “Statistical geometrical Features for texture classification,” Pattern Recognition, Vol. 28, pp. 537-552 (1985).
7. R.M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image Classification,” IEEE Transaction on Systems, Man, and Cybernetics, Vol. 3, No. 6, pp.610-621, (1973)
8. D.C. He, L. Wang, “Texture features based on texture spectrum,” Pattern Recognition, Vol. 24, pp. 391-399 (1991).
9. Li Wang, “Texture classification using texture spectrum,” Pattern Recognition, Vol. 23, pp. 905-910 (1990).
10. Wu. CM, Chen TC, “Statistical feature matrix for texture analysis,” IEEE Transaction Syst. Man. Cybernet, Vol.3 , pp. 610-621 (1973).
11. Y.Q. Chen, M.S. Nixon, D.W. Thomas, “Statistical geometrical features for texture analysis,” Proceeding of the First IEEE Int. Conference on Image Processing, Vol. 3, pp. 445-450(1994).
12. L. Wang, D.C. He, “A new statistical approach for texture analysis,” Photogrammetric Engng. Remote Sens, Vol. 56, pp. 61-66(1990).
13. A.J. Abdulrahman, “Performance evaluation of cross-diagonal texture matrix method of texture analysis,” Pattern Recognition, Vol. 34, pp. 171-180 (2001).
14. P.P. Ohanian, R.C. Dubes, “Performance evaluation for four classes of textural features,” Pattern Recognition, Vol. 25, pp. 819-833(1992).
15. R.C. Gonzalez, R.E. Woods, “Digital Image Processing,” Addison-Wesley, Reading, MA, 1992.
16. D.C. He, L. Wang, J. Gillert, “Texture discrimination based on an optimal utilization of texture features,” Pattern Recognition, Vol. 21, pp. 141-146 (1988).
17. P. Brodatz, “Textures: A Photographic Album for Artists and Designers,” Reinhold Publication, New York (1968).
18. S.W. Zucker, “Toward a model of texture,” Computer Vision Graphics Image Process, Vol. 5, pp. 190-212 (1976).
19. L. Van Gool, P. Dewaele, A. Oosterlinck, “Texture analysis anno 1983,” Comput. Vision Graphics Image Process, Vol. 29, pp. 336-357 (1985)
20. T. R. Randen, J.H. Husoy, “Filtering for texture classification: a comparative study, “ IEEE Trans. Image Processing, Vol. 2,pp. 291-310 (1999).
21. Y.G. Lee, J.H. Lee, Y.C. Hsueh, “Texture classification using fuzzy uncertainty texture spectrum,”, Neurocomputing, Vol. 20, pp. 115-122 (1998)
22. C.M. Wu, Y.C. Chen, K.S. Hsieh, “Texture feature for classification of ultrasonic liver images” IEEE Transaction on MI, Vol. 11, No. 2, pp.141-152, (1992)
23. J.Weszka, C.Dyer, and A.Rosenfeld, ”A comparative study of texture measures for terrain classification,” IEEE Transaction on Systems, Man, and Cybernetics, SMC-6, pp.610-621, (1976)
24. T. Ojala, M.P. Ainen, and D. Harwood, “A comparative study of texture measures with classification based on feature distributions,” IEEE Transaction Vol. 29, No. 1, pp. 51-59 (1996).
25. He DC, Wang L, Guibert J “Texture discrimination based on an optimal utilization of texture features,” Pattern Recognition, Vol. 21, pp. 141-146 (1989).
26. 王健亞,”肝臟超音波影像之電腦輔助判讀系統”,國立成功大學碩士論文。
27. J.S. Weszka, C.R. Dyer, A. Rosenfeld, “A comparative study of texture measures for terrain classification,” IEEE Trans. Systems Man. Cybernet Vol. 5, pp. 269-285(1976).
28. Y.Q. Chen, M.S. Nixon, D.W. Thomas, “On texture classification,” Int. J. Systems Sci., Vol. 28, pp. 669-682(1995).
29. Y.Q. Chen, M.S. Nixon, D.W. Thomas, “Texture classification using statistical geometrical features,” Pattern Recognition, Vol. 28, pp. 537-552(1995).
30. J.M.H. Du Buf, M. Kardan, M. Spann, “Texture feature performance for image segmentation,” Pattern Recognition, Vol. 23, pp. 291-309(1990).
31. G. Cross, A. Jain, “Markov random fields texture models,” IEEE Trans. Pattern
Anal. Mach. Intell., Vol. 5, pp. 25-39(1983).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top