|
[1] T. W. Parks and C. S. Burrus, Digital Filter Design, John Wiley, New York, 1987, pp. 54-83. [2] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice Hall, Inc., Englewood Cliffs, NJ, 1989. [3] L. R. Rabiner and B. Gold, Theory and application of digital signal processing, Prentice Hall, Inc., Englewood Cliffs, 1975. [4] L. B. Jackson, Digital filters and signal processing, Kluwer Academic Publishers, 1989. [5] I. W. Selesnick, M. Lang, and C.S. Burrus. “Constrained Least Square Design of FIR Filters without Specified Transition Bands.” Proceedings of the IEEE Int. Conf. Acoust., Speech, Signal Processing. Vol. 2, pp. 1260-1263, May 1995. [6] B. Friedlander and B. Porat, “The Modified Yule-Walker Method of ARMA Spectral Estimation”, IEEE Transaction on Aerospace Electronic Systems, AES-20, No. 2, pp. 158-173, March 1984. [7] Q. Zhao and Y. Tadokoro, “A simple design of FIR filters with powers-of-two coefficients”, IEEE Trans. Circuits Syst., vol. 35, pp. 566-570, May 1988. [8] H. Samuli, “An improved search algorithm for the design of multiplierless FIR filters with powers-of-two coefficients”, IEEE Trans. Circuits Syst., vol. 36, pp. 1044-1047, July 1989. [9] Y. C. Lim and S. R. Parker, “FIR filter design over a discrete powers-of-two coefficient space”, IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-31, pp. 538-591, June 1983. [10] Y. C. Lim and S. R. Parker, “Discrete coefficient FIR digital filter design based upon an LMS criteria”, IEEE Trans. Circuits Syst., vol. CAS-30, pp. 723-739, Oct. 1983. [11] Y. C. Lim and S. R. Parker, “Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude”, IEEE Trans. Circuits Syst., vol. 37, pp. 1480-1486, Dec. 1990. [12] H. Shaffeu, M. M. Jones, H.D. Griffiths, and J.T. Taylor, “Improved design procedure for multiplierless FIR digital filters”, Electronics Letters, vol. 27, pp. 1142-1144, June 20, 1991. [13] N. Benvenuto, M. Marchesi, and A. Uncini, “Applications of simulated annealing for the design of special digital filters”, IEEE Trans. Signal Processing, vol. 40, pp. 323-332, Feb. 1992. [14] R. Cemes and D. Ait-Boudaoud, “Genetic approach to design of multiplierless FIR filters”, Electronics Letters, vol. 29, pp. 2090-2091, Nov. 25, 1993. [15] D. Ait-Boudaoud and R. Cemes, “Modified sensitivity criterion for the design of powers-of-two FIR filters”, Electronics Letters, vol. 29, pp. 1467-1469, Aug. 5, 1993. [16] S. Powell and P. Chau, “Efficient narrowband FIR and IFIR filters based on powers-of-two sigma-delta coefficient truncation”, IEEE Trans. Circuits Syst. II, vol. 41, pp. 497-505, Aug. 1994. [17] J. J. Shyu and Y. C. Lin, “A new approach to the design of discrete coefficient FIR digital filters”, IEEE Trans. Signal Processing, vol. 43, pp. 310-314, Jan. 1995. [18] C. L Chen and A. N. Willson Jr., “Higher order modulation encoding for design of multiplierless FIR filters”, Electronics Letters, vol. 34, No. 24, pp. 2298-2300, Nov. 26, 1998. [19] Y. C. Lim, R. Yang, D. Li, and J. Song, “Signed-powers-of-two term allocation scheme for the design of digital filters”, IEEE Trans. Circuits Syst. II, vol. 46, pp. 577-584, May 1999. [20] C. L Chen and A. N. Willson Jr., “A trellis search algorithm for the design of FIR filters with signed powers-of-two coefficients”, IEEE Trans. Circuits Syst. II, vol. 46, pp. 29-39, Jan. 1999. [21] G. Knowles, “VLSI architecture for the discrete wavelet transform,” Electronics Letters, vol. 26, no. 15, pp. 1184-1185, July 1990. [22] M. Vishwanath, R. Owens, and M. J. Irwin, “VLSI architecture for the discrete wavelet transform,” IEEE Trans. on Circuits and Systems II, analog and digital signal processing, vol. 42, no. 5, pp. 305-316, May 1995. [23] C. Yu, C. A. Hsieh, and S. J. Chen, “Design and implementation of a highly efficient VLSI architecture for discrete wavelet transform,” in Proc. IEEE Custom Integrated Circuits Conference, May 1997, pp. 237-240. [24] A. S. Lewis and G. Knowles, “VLSI architecture for 2-D daubechies wavelet transform without multipliers,” Electronics Letters, vol. 27, no. 2, pp. 171-173, Jan. 1991. [25] C. Yu and S. J. Chen, “VLSI implementation of 2-D discrete wavelet transform for real-time video signal processing,” IEEE Trans. on Consumer Electronics, vol. 43, no. 4, pp. 1270-1279, Nov. 1997. [26] A. Peled and B. Liu, “A New Approach to the Realization of Nonrecursive Digital Filters”, IEEE Trans. Audio and Electroacoustics, vol. 21, No. 6, pp. 477-485, Dec. 1973. [27] A. Peled and B. Liu, “A New Hardware Realization of Digital Filters”, IEEE Trans. on A.S.S.P., vol. 22, pp. 456-462, Dec. 1974. [28] S. A. White, “Applications of Distributed Arithmetic to Digital Signal Processing: A Tutorial Review”, IEEE ASSP Magazine, pp. 4-19, July 1989. [29] S. Palnitkar, Verilog HDL A Guide to Digital and Synthesis, Prentice Hall, Inc., NJ, 1996. [30] Xilinx, “Distributed Arithmetic FIR Filter V3.0.0”, URL: www.xilinx.com/ipcenter, July 5, 2000. [31] J. J. Shyu, Eigenfilter Approach to the Design of FIR and IIR Digital filters, Ph.D. dissertation, Electrical Engineering Department, National Taiwan University, 1992. [32] Xilinx, Libraries Guide, Xilinx Inc., 1999. [33] J. H. McClellan, “The design of two-dimensional digital filters by transformations”, Proc. 7th Annual Princeton Conf. Information Sciences and Systems, 1973, pp.247-251. [34] D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal Processing, Prentice-Hall: Englewood Cliffs, NJ, 1984. [35] S. C. Pei and J. J. Shyu, “Design of two-dimensional FIR digital filters by McClellan transformation and least squares eigencontour mapping”, IEEE trans. Circuits System-II, vol. 40, September 1993, pp. 546-555. [36] E. Z. Psarakis, V. G. Mertzios, and G. P. Alexiou, “Design of two-dimensional zero phase FIR fan filters via the McClellan transform”, IEEE trans. Circuits System, vol. CAS-37, pp. 10-16, Jan. 1990. [37] M. S. Reddy and S. N. Hazra, “Design of elliptically symmetric two-dimensional FIR filters using the McClellan transformation”, IEEE trans. Circuits System, vol. CAS-34, pp. 196-198, Feb. 1987. [38] H. K. Kwan and C. L. Chan, “Circularly symmetric two-dimensional multiplierless FIR digital filter design using an enhanced McClellan transformation”, IEEE Proceeding, vol. 136, pp. 129-134, June 1989. [39] D. Esteban and C. Ganlanf, “Application of quadrature mirror filters to split band voice coding cheme”, Proc. IEEE Internat. Conf. Acoust. Speech Signal Process., May 1977, pp. 191-195. [40] B. R. Hong, H. Samueli, and A. V. Willson, “The design of low complexity linear-phase FIR filter banks using powers-of-two coefficients with an pplication to subband image coding”, IEEE Trans. Circuits Systems Video Technol., Vol. 1, December 1991, pp. 318-324. [41] J. Woods and S. O’Neil, “Subband coding of images”, IEEE trans. Acoust. Speech Signal Process., Vol. 34, October 1986, pp. 1278-1288. [42] J. J. Shyu, “Design of two-channel perfect-reconstruction linear-phase filter banks for subband image coding by the Lagrange multiplier approach”, IEEE Trans. Circuits Systems Video Technol., February 1995, pp. 48-51. [43] F. J. Brophy and A. C. Salazar, “Two Design techniques for digital phase network”, Bell Syst. Tech. J., vol. 54, pp. 767-781, Apr. 1975. [44] P. A. Bernhardt, “Simplified design of high-order recursive group-delay filters”, IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-28, pp. 498-503, Oct. 1980. [45] B. Yegnanarayana, “Design of recusive group-delay filters by autoregressive modeling”, IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-30, pp. 632-637, Aug. 1982. [46] K. P. Estola and T. Saramaki, “A new method for designing equiripple error group delay filters”, in Proc. IEEE Int. Symp. Circuits Syst., 1985, pp. 271-274. [47] Z. Jing, “A new method for digital all-pass filter design”, IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, pp. 1557-1564, Nov. 1987. [48] S. C. Pei and J. J. Shyu, “Eigenfilter design of 1-D and 2-D IIR digital all-pass filters”, IEEE Trans. Signal Processing, vol. 42, pp. 996-998, Apr. 1994. [49] B. Nobel and J. W. Daniel, Applied Linear Algebra. Englewood Cliffs, NJ: Prentice-Hall, 1977.
|