跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 22:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:連祧志
研究生(外文):Tiao-Zhi Lien
論文名稱:具學習能力之多位代理人供應鏈模型研究
論文名稱(外文):Supply Chain Multi-Agents Modeling with Learning Capability
指導教授:蔡坤穆蔡坤穆引用關係
指導教授(外文):Kune-Muh Tsai
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:運輸與倉儲營運系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:91
中文關鍵詞:供應鏈多位代理人代理人學習類神經網路模擬
外文關鍵詞:supply chainmulti-agentsagent learningneural networksimulation
相關次數:
  • 被引用被引用:4
  • 點閱點閱:336
  • 評分評分:
  • 下載下載:122
  • 收藏至我的研究室書目清單書目收藏:6
要了解供應鏈體系,可以藉由供應鏈模型來加以了解。固定的模型,可以表示目前的情況,但是外在環境是會改變的。今天的模型經過了一段時間後,先前所決定的策略已經不適用於經過時間和環境變動後的情況,必須要更改策略,決定出適合現今狀態的策略。為了讓模型能夠達到此一目標,所以要讓模型具有學習及適應的能力,以適應時間及環境的改變。
在供應鏈系統中,分布於不同階層的各單元,像是供應商、經銷商、物流中心、零售商。自主但是互相依賴地做其決策。利用代理人程式,可以表現出像人類般的思考及行為,所以將供應鏈系統不同階層的各單元像是供應商、經銷商、物流中心、零售商等,以代理人程式來表達並建立供應鏈模型,則更能夠真實的表達出真實世界裡的供應鏈體系。
在用代理人來建構供應鏈模型時,對於代理人所要採行的策略,是依據初始建構模型時的情況先行定義出一較佳策略。經過時間和環境的變化以及供應鏈上代理人之間的互動之後。先前的策略可能已經不是較佳的策略,甚至此策略可能已經變成無效了。這時代理人應該要調整它的策略,應用它的智慧找出適合此情況的策略。為了達到此一目標,則代理人應該要能夠根據過去的經驗來學習,對於環境的變化,依據過去學習的經驗找出較佳的策略。本研究設計了供應鏈上代理人內部學習的機制並說明代理人如何在供應鏈上收集資訊以進行學習。最後使用模擬工具建構具有學習能力的多位代理人供應鏈模型和原始不具有學習能力的模型比較,實驗結果顯示具有學習能力的模型具有較好的績效表現。
To provide customer with low cost of products and high service level, logistics plays an important role. As companies move into internationalization, logistics systems become much more complex and difficult to manage. Many international companies implemented global logistics systems, or manugisitics to restructure their logistics structure and product design module in order to get closer to market to provide responsive but low cost product and service. Before manugistics is implemented, companies have to consider strategic decision variables such as manufacturing strategy (make to stock, make to order, and assemble to order), batch quantity, product design postponement strategy, information sharing, etc. Logistics systems can be viewed as supply chain networks, with entities spreading out echelons of channels working autonomous and interdependent toward a common goal of providing end customers with high service level but low cost. Multi-agent approach, therefore, can be used for modeling entities of supply chain networks that are intelligent and adaptive. Learning capability of agents is considered in the model for further improvement on the ability of agents. Traditional knowledge base method, as well as neural network approach is considered complementarily.
The model built can evolve with time as more rules are implemented in the model to represent closer real world supply chain business operations. For international companies, the model can help them determine significant strategic decision variables before implementation.
誌謝 i
中文摘要 ii
ABSTRACT iii
目 錄 iv
表 目 錄 vi
圖 目 錄 vii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究範圍與限制 4
1.5 論文架構與研究流程 4
第二章 文獻回顧 7
2.1 供應鏈管理 7
2.1.1 供應鏈管理的定義 7
2.1.2 供應鏈模式 10
2.2 代理人理論 16
2.2.1 代理人的定義 17
2.2.2 代理人的分類 18
2.2.3 代理人在供應鏈管理上的應用 20
2.3 代理人的學習 23
2.3.1 代理人學習領域的相關研究 23
2.3.2 類神經網路 25
2.3.3 類神經網路理論 26
2.3.4 倒傳遞類神經網路 28
2.3.5 增強式學習簡介 31
第三章 模式建構 35
3.1 多位代理人供應鏈模型 35
3.1.1 模擬軟體適用性說明 35
3.1.2 使用SIMPLE ++建構模型 40
3.2 具學習能力之多位代理人供應鏈模型 48
3.2.1 學習角色的界定 48
3.2.2 學習代理人 49
3.2.3 學習代理人的學習過程 58
第四章 實驗設計與資料分析 61
4.1 實驗假設 61
4.2 代理人學習過程實驗 62
4.3 模式比較實驗 65
4.4 實驗總結 74
第五章 結論與建議 75
5.1 研究結論 75
5.2 後續研究建議 76
參考文獻 77
中文文獻
1.高孔廉,張緯良,1993,作業研究,初版,五南書局。
2.陳家明等,2001,系統模擬eM-Plant(SIMPLE ++)操作與實務,華泰書局。
3.賴宏人、楊子青、陳年興,“ Intelligent Agent的整合性功能架構 ”,第七屆國際資訊管理研討會,1996,第57-85頁。
英文文獻
1 .Aydin, M. E.; Öztemel, E.(2000),“Dynamic job-shop scheduling using reinforcement learning agents”, Robotics and Autonomous Systems Volume: 33, Issue: 2-3, November 30, pp. 169-178
2. Barbuceanu, M.., Teigen, R. and Fox, M. S. ,(1997) “Agent based design and simulation of supply chain”,Enable Technologies:Infrastructure for Collaborative Enterprises pp. 36-41,IEEE。
3. Beale,R. and Wood,A.,(1994) “Agent-Based Interaction,” People and Computers IX:Proceedings of HCI ’94, UK.pp.239-245,August 。.
4. Beamon, B.M. (1998) “Supply Chain Design and Analysis:Models and Methods,” International Journal of Production Economics, 55, pp. 281-294.
5. Bonarini, A .; Trianni, V.,(2001)“Learning fuzzy classifier systems for multi-agent coordination”, Information Sciences Volume: 136, Issue: 1-4, August, pp. 215-239。
6. Bowersox, D. J., Closs, D. J.,(1996), Logistics Management: The Integrated Supply Chain Process, International Editions, McGraw-Hill Book Co.。.
7. Ellram, L. M. (1991). “Supply Chain Management: The Industrial Organization Perspective”, International Journal of Physical Distribution & Logistics Management Vol. 21, No. 1, pp. 13-22.
8.Fox, M. S., Chionglo, J. F., Barbuceanu, M .,(1993), “ The Integrated Supply Chain Management System” Internal Report, Dept. of Industrial Engineering, University of Toronto.
9.Harrington, L. ,(1995) “Logistics, Agent for Change: Shaping the Integrated SupplyChain”, Traffic & Distribution, January, pp.30-34.
10. Ganeshan, R .; Boone, T.; Stenger, A. J.(2001) “ The impact of inventory and flow planning parameters on supply chain performance: An exploratory study ”,International Journal of Production Economics Volume: 71, Issue: 1-3, May ,pp. 111-118
11. Haykin, S.,(1994), Neural Networks- a comprehensive foundation, pp.45-89, Prentice Hall.
12. Jack G. A. J., Beulens, A ., and van B. P. , (2000)“Modelling and Simulating Multi-Echelon Food System”, European Journal of Operational Research, Vol. 122, Issue: 2, pp.354-366.
13. Jansen, D. R.; Weert, A.; Beulens, A.; Huirne, R.(2001),“ Simulation model of multi-compartment distribution in the catering supply chain ”,European Journal of Operational Research Volume: 133, Issue: 1, August 16, pp. 210-224
14. Johannet, A; Sarda, I.(1999),“Goal-directed behaviours by reinforcement learning”, Neurocomputing Volume: 28, Issue: 1-3, October, pp. 107-125
15. Kaelbling, L. P., Littman M. L. , Moore A. W.(1996)“Reinforcement Learning : A Survey”, Journal of ArtificialIntelligence Research, 4, pp. 237-285.
16. Lambert, D. M., Cooper, M. C., and Pagh, J. D. (1998). “Supply Chain Management, Implementation Issues and Research Opportunities,” The International Journal of Logistic Management, Vol. 9, No. 2, pp. 1-19.
17. Lee, H. L. and Billington, C.,(1992) “Managing Supply Chain Inventory : Pitfalls and Opportunities,” Sloan Management Review, pp.65-73.
18. Lin, F.,(1996) “Reengineering the Order Fulfillment Process in Supply Chain Networks: A Multi-agent Information System Approach”, Ph.D. Dissertation, University of Illinois at Urbana-Champaign.
29. Lin, F. R. ,Shaw, M. J.,(1998) “Reengineering the Order Fulfillment Process in SupplyChain Network,” forthcoming in Journal of Flexible Manufacturing Systems, 10(3), 197-229.
20.Meng, C.; Pakath, R.,(2001),“The Iterated Prisoner''s Dilemma: early experiences with Learning Classifier System-based simple agents ”, Decision Support Systems Volume: 31, Issue: 4, pp. 379-403
21. Michel, J. D.,(1999),“Individual-based modelling of fishermen search behaviour with neural networks and reinforcement learning”, Ecological Modelling Volume: 120, Issue: 2-3, pp. 287 — 297.
22. Minegishi, S.; Thiel, D.,(2000)“ System dynamics modeling and
simulation of a particular food supply chain ” Simulation Practice and
Theory Volume: 8, Issue: 5, December 15, pp. 321-339
23. Moore, M.L., Reyns, R.B., Kumara, R. T.and Hummel, J. R.,(1997),“Distributed intelligent agents for logistic(DIAL)”,Computational Cybernetics and Simulation Volume 3 pp. 2786-2787 , IEEE。
24. Park, K.; Kim, Y. ; Kim, J.,(2001),“Modular Q-learning based multi-agent cooperation for robot soccer”, Robotics and Autonomous Systems Volume: 35, Issue: 2, May 31, 2001, pp. 109-122
25.Petrovic D.,(2001),“Simulation of supply chain behaviour and performance in an uncertain environment ”int. J. Production Economics 71 pp.429-438.
26. Sandholm, T. W.; Crites, R. H.(1996),“Multiagent reinforcement learning in the Iterated Prisoner''s Dilemma”, Biosystems Volume: 37, Issue: 1-2, pp. 147-166.
27. Strader, T.J., Lin, F.R. & Shaw, M.J.,(1998) “The Impact of Information Sharing on Order Fulfillment in Divergent Differentiation Supply Chains,” Journal of Global Information Management, Vol. 7, No. 1, pp.16-24.
28. Stevens, B., (1989), “Integrating the Supply Chain”, International Journal ofPhysical Distribution and Materials Management, Vol. 19, pp.3-8.
29. Sutton, R. S.,(1992), Introduction: The Challenge of Reinforcement Learning, Machine Learning, 8, pp.225-227, Kluwer Academic.
30.Sutton, R. S. , Barto A. G.,(1998) Reinforcement Learning: An Introduction , MIT.
31. Swaminathan, J.M.,(1996), “Quantitative Analysis of Emerging Practices in Supply Chain”, Ph.D. Dissertation, Graduate School of Industrial Administration and Robotics Institute, Carnegie Mellon University.
32. Swaminathan, J.M., Smith, S. F., and Sadeh, N. M.,(1998) “Modeling Supply Chain Dynamics: A Multi-agent Approach”, Decision Sciences, Vol. 29, Issue: 3, pp.607-632.
33.Taha, H.A.,1992,Operation Research,Macmillan College Publishing Company。
34. Thomas, D. J., and Griffin, P. M. (1996). “Coordinated Supply Chain Management,”European Journal of Operational Research, Vol. 94, No. 1,
pp. 1-15.
35. Wooldridge, M.J., and N.R. Jennings,(1995),“Agent Theories , Architectures , and Languages”,Tutorial, First International Conference on Multi-Agent Systems.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top