|
1.Davenport, T. H. and Prusak, L. (胡瑋珊譯) ,2000, 知識管理,中國生產力。2.Gates, B., 1999, 樂為良譯,“數位神經系統:與思考等快的明日世界”,商業周刊。3.方世榮,1996,行銷學,台北:三民書局。4.吳思華,1996,策略九說,台北:麥田出版社。5.吳靄書,1995,現代零售管理,大中國圖書股份有限公司,頁1~26。6.李孟熹,1995,實戰零售學(上)零售業行銷策略,群泰企管公司叢書,頁2~10。7.李昇暾,2001,”以資料採研深化顧客關係管理”,遠擎期刊,遠擎管理顧問公司出版,頁99-111。8.村上豐道,1998,7-ELEVEN大革命,大展出版社有限公司。9.沈清正、陳仕昇、高鴻斌、張元哲、陳家仁、黃琮盛、陳彥良,2002,”資料間隱含關係的挖掘與展望”,資訊管理學報,9卷,專刊期。10.沈維明,2000,應用資料挖掘於目標行銷之研究,私立輔仁大學資管系,碩士論文。11.林文修, 1997, “Data Mining探索(上)(下)”, 叡陽資訊經營決策論壇,第13、14期。12.林琪淵,2000,在POS資倉儲中挖掘關聯規則,國立中央大學資管系,碩士論文。13.邵敏華,1997,建構開放性之企業知識管理系統-以行銷公司為例,國立政治大學資管系,碩士論文。14.胡運沛,2000,探勘交易觸發事件與消費特徵,國立雲林科技大學資管系,碩士論文。15.張瑋倫,2000,應用資料挖掘學習方法探討顧客關係管理問題,私立輔仁大學資管系,碩士論文。16.曾守正,1997,“從想像中找出事實:如何讓Data Mining成為企業的一部分?”,資訊與電腦,12月,頁82-84。17.曾守正、周韻寰,1999,資料庫系統進階實務,儒林圖書有限公司,頁8-1 ~8-97。18.黃彥文,2000,資料探勘之應用 - 會員消費特徵之發掘,國立屏東科技大學資管系,碩士論文。19.勤業管理顧問公司著(劉京偉譯),2000,知識管理的第一本書,商周出版。20.楊亨利、郭家佑,2000,”資料庫中空間性週期關聯規則之發掘-以便利商店交易資料為例”,中華管理評論,3卷,7期,3月,頁99~121。21.廖啟揚,2002,”2002年台灣地區零售通路營運走向分析報告”,零售市場雜誌,381期,2月。22.緒方知行,1995,7-Eleven物語,時報文化出版企業有限公司。23.Adriaans, P. and Zantinge, D., 1996, Data Mining, Addison Wesley Longman.24.Aggarawal, C. and Yu, P., 1998, “A New Framework for Itemset Generation”, Proceedings of the ACM PIOS.25.Agrawal, R., et al., 1993, “Mining Association Rules between Sets of Items in Large Databases”, Proc. of the ACM SIGMOD 1993 International Conference on Management of Data, May, pp. 207-216.26.Agrawal, R. and Srikant, R., 1994,”Fast Algorithms for Mining Association Rules”, Proc. of the Int''l Conf. Very Large Data Bases, pp. 487-499.27.Agrawal, R. and Srikant, R., 1995, “Mining Sequential Patterns”, Proc. of the Int’1 Conference on Data Engineering (ICDE), Taipei, Taiwan, March.28.Agrawal, R., et al., 1996, “The Quest Data Mining System”, Proceedings of the Int’l Conference on Knowledge Discovery in Databases and Data Mining, Portaland, Oregon, August.29.Berry, M. A. and Linoff, G. S., 2000, Mastering Data Mining: The Art & Science of Customer Relationship Management, John Wiley & Sons, Inc.30.Berson, A. and Smith, S. J., 1997, Data Warehousing, Data Mining, and OLAP, McGraw-Hill.31.Bock, F., 1998, “The Intelligent Organization”, Arthur D. Little PRISM, Second Quarter.32.Brachman, R. J., et al., 1996, “Mining Business databases”, Communications of the ACM, Vol. 39, No. 11, Nov., pp. 42-48.33.Breiman, L., et al., 1984, Classification and Regression Tree, Wadsworth, Belmont, CA.34.Brin, S, Motwani, R. and Silverstein, C., 1997a,”Beyond Market Baskets: Generation Association Rules to Correlations”, Proceeding of the ACM SIGMOD International Conference on Management of Data, pp. 265-276.35.Brin, S, et al., 1997b,”Dynamic Itemset Counting and Implication Rules for Market Basket Data”, Proceeding of the ACM SIGMOD International Conference on Management of Data, pp. 255-264.36.Carter, C. L. and Hamilton, H. J., 1995, “A Fast, On-Line generalization Algorithm for Knowledge Discovery”, Applied Mathematics Letters, Vol. 8, Issue: 2, March, pp. 5-11. 37.Carter, C., Hamilton, H. and Cercone, N., 1997, “Share Based Measures for Itemsets”, Principles of Data Mining and Knowledge discovery, J. Komorowski and J. Zytkow (Eds.), pp. 14-24.38.Chen, M.S, Han, J. and Yu, P. S., 1996, “Data Mining: An Overview from a Database Perspective”, IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 6, Dec., pp. 866-883.39.Cheung, D. W., et al., 1996, “A Fast Distributed Algorithm for Mining Association Rules”, Proc. of the 1996 Int’l Conf. On PDIS’96, Miami Beach, Florida, USA, Dec.40.Cheung, D. W., Lee, S. D. and Kao, B., 1997, " A General Incremental Technique for Maintaining Discovered Association Rules," Proceedings of the Fifth International Conference On Database Systems For Advanced Applications (DASFAA ''97), Melbourne, Australia. March.41.Clark, P. and Niblett, T., 1989, “The CN2 Induction Algorithm”, Machine Learning, Vol. 3, pp. 261-283.42.Codd, E. F., Codd, S. B. and Salley, C. T., 1993, “Providing OLAP (On-Line Analytical Processing) to User Analysts: An IT Mandate”, White Paper, Arbor Software Corporation.43.Davenport, T. H. et al., 1998, “Successful Knowledge Management Projects”, Solan Management Review, Vol.39, pp. 43-57.44.Dawson, R., 2000, Developing Knowledge-Based Client Relationships: The Future of Professional Services, Butterworth — Heinemann, Boston.45.Fayyad, U.M., et al., 1996, “ Advances in Knowledge Discovery and Data Mining”, AAAI Press/The MIT Press, Menlo Park.46.Fayyad, U.M., Shapiro, G. P. and Smyth, P., 1996a, “From data Mining to Knowledge Discovery: An Overview”, Advances in Knowledge Discovery and Data Mining, MA AAAI/ MIT Press, pp. 1-36. 47.Fayyad, U.M., Shapiro, G. P. and Smyth, P., 1996b, “The KDD Process for Extracting Useful Knowledge from Volumes of Data”, Communications of the ACM, Vol. 39, No. 11, pp. 27-34. 48.Fu, Yongjina, 1996, ”Discovery of Multiple-Level Rules from Large Databases”, Ph. D. dissertation, Simon Fraser University.49.Gresten, W, Wirth, R. and Arndt, D, 2000, ”Predictive Modeling in Automotive Direct Marketing: Tools, Experiences and Open Issues”, KDD 2000, pp. 398-406.50.Gundry J. and Metes G., 1998, “Team Knowledge Management”, A Computer Mediated Approach, Sep.51.Ha, S. H. and Park, S. C., 1998, “Application of Data Mining Tools to Hotel Data Mart on the Intranet for Database Marketing”, Expert Systems With Applications, Vol. 15, pp. 1-31.52.Han, J., Cai, Y. and Cercone, N., 1991, “Attribute-Oriented Induction in Relational Databases”, Knowledge Discovery in Databases, pp. 213-228.53.Han, J., Cai, Y. and Cercone, N., 1992, “Knowledge Discovery in Database: An Attributed-Oriented Approach”, Proceeding of the 18 International Conference on Very Large Data Bases, pp. 547-559.54.Han, J., Cheung, D. W. and Fu, A. W., 1994, “Knowledge Discovery in Database: A Rule-Based Attribute-Oriented Approach”, proc. of the 8 International Sympsium on Methodologies for Intelligent Systems, pp. 164-173.55.Han, J. and Fu, Y., 1995, “Discovery of Multiple-Level Association Rules from Large Databases”, 1995 Int. Conf. Very Large Database, Sept., pp.400-431.56.Han, J., et al., 1995a, “Advances of the DBLearn System for Knowledge discovery in Large Databases”, Proc. of 1995 Int’l Joint Conf. on Artificial Intelligence (IJCAI’95), Montreal, Canada, Aug, pp. 2049-2050.57.Han, J., 1998, “Towards On-Line Analytical Mining in Large Databases”, ACM SIGMOD RECORD, Vol. 27, No.1, Mar., pp. 97-107.58.Han, J. and Kamber, M., 2001, Data Mining Concepts and Techniques, Academic Press.59.Harris, D. B., 1996, “Creating a Knowledge Centric Information Technology Environment”, September.60.Hasan, H. and Hyland, P., 2001, “Using OLAP and Multidimensional Data for Decision Marking”, IT Pro.61.Hedlund, G., 1994, “A Model of Knowledge Management and the N-Form Corporation”, Strategic Management Journal, Vol. 15, pp. 73-90.62.Hiderman, R. J., et al., 1996, “Data Mining with Concept Generalization Graphs”, In Proceedings of the Ninth Annual Florida AI Research Symposium, Key West, Florida, May.63.Hilderman, R. J., Hamilton, H. J. and Barber, B, 1999, “Ranking the Interestingness of Summaries from Data Mining Systems”.64.Hipp, J., Guntzer, U. and Nakhaeizadeh,G. , 2000, “Algorithms for Association Rule Mining — A General Survey and Comparison “, ACM SIGKDD, Vol. 2, pp. 58-64.65.Hope, J. and Hope, T, 1997, “Competing In the Third Wave: The Ten Key Management Issues of the Information Age”, Harvard Business School Press.66.Hoven, J. V. D., 1998,”Data Warehousing: Bringing It All Together”, Information System Management, Spring, pp. 92-95.67.Inmon, W. H., 1993, Building Data Warehouses, John Wiley and Sons.68.Inmon, W. H., and Hackathorn, R. D., 1994, Using The Data Warehouse, John Wiley and Sons.69.Karlenzig, W., 2000, “What KM Really Contributes to E-Business”, Knowledge Management Magazine3, Vol. 1, No. 14.70.Kennedy, R. L., et al., 1998, Solving Data Mining Problems through Pattern Recognition, Unica Technologies Inc.71.Kimball, R., 1996, The Data Warehouse Toolkit, John Wiley & Sons, New York.72.Klemettinen, M. Mannila, H. and Verkamo, A. I., 1999, “Association Rule Selection in a Data Mining Environment”, PKDD-99, pp. 372-377.73.Liu, B., et al., 1998, “Visually Aided Exploration of Interesting Association Rules”, National University of Singapore.74.Mantaras, R. L., 1991, "A Distance-Based Attribute Selection Measure for Decision Tree Induction," Machine Learning 6, pp. 81-92.75.Murtaza, A., 1998,”A framework for Developing Enterprise data Warehouse”, Information System Management, Fall, pp. 21-26.76.Nonaka, I. And Takeuchi, H., 1991, “The Knowledge-Creating Company”, Harvard Business Review, November-December, pp. 2-9.77.Nonaka, I., 1994, “A Dynamic Theory of Organizational Knowledge Creation”, Organization Science, Vol. 5, No. 1, pp. 14-37.78.Nonaka, I. And Takeuchi, H., 1995, The Knowledge-creating Company, New York, Oxford.79.Nonaka, I., Umemoto, K. and Senno, D., 1996, “From Information Processing to Knowledge Creation: A Paradigm Shift in business Management”, Technology in Society, Vol. 18, No. 2, pp. 203-218.80.Park, J. S., Chen, M. S. and Yu, P. S., 1995, “An Effective Hash Based Algorithm for Mining Association Rules”, Proc. of ACM SIGMOD, May 23-25, pp. 175-186.81.Park, J. S., Chen, M. S. and Yu, P. S., 1997,”Using a Hash-Based Method with Transaction Trimming and Database Scan Reduction for Mining Association Rules”, IEEE Trans. On Knowledge and Data Engineering, Vol. 9, No. 5, October, pp. 813-825.82.Piatesky — Shapiro, G. and, Frawley, W. J., 1991, “Knowledge Discovery in Database”, AAAI Press/ The MIT Press: Cambridge, MA.83.Pork, J. S., Chen, M. S. and Yu, P. S., 1995, “An Effective Hash Based Algorithm for Mining Association Rules”, ACM SIGMOD, May, pp. 175-186.84.Puzzanghera, P., 1999, “The bigger picture ”, Intelligent Enterprise MAR, pp.39.85.Quinlan, J. R., 1979, “Discovering rules from large collections of examples: a case study”, In Michie, D., editor, Expert Systems in the Microelectronic Age. Edinburgh University Press, Edinburgh Scotland.86.Quinlan, J.R., 1986, “Induction of Decision Tree”, Machine Learning, Vol.1, pp.81-106.87.Quinlan, J. R, 1993, “C4.5: Programs for Machine Learning”, Morgan Kaufmann, San Mateo, CA.88.Quinn, J. B., Anderson, P. and Finkelstein, S., 1996, “Managing Professional Intellect: Marking the Most of the Best”, Harvard Business Review, March-April, pp. 71-80.89.Savasere, A., Omiecinski, E. and Navathe, S., 1995, "An Efficient Algorithm for Mining Association Rules in Large Databases," Proc. Int''l Conf. Very Large Data Bases, Zurich, Switzerland, Sept, pp. 432-444.90.Savasere, A., Omiecinski, E. and Navathe, S., 1998, “Mining for Srong Negative Associations in A Large Database of Customer Transactions”, Proc. of the 14th International Conference on Data Engineering, Feb., pp. 494-502.91.Shaw, M.J., et al., 2001, “Knowledge management and data mining for marketing”, Decision Support Systems, Vol.31, pp.127-137.92.Smith, R. G. and Farquhar A., 2000, “The Road Ahead for Knowledge Management An AI Perspective”, AI MAGAZINE, pp. 17-40.93.Spek, R. V. and Spijkervent, A., 1997, “Knowledge Management: Dealing Intelligently with Knowledge”, Knowledge Management and It’s Integrative Elements, edited by Liebowitz, J. and Wilcox, L. C., CRC Press, New York, pp. 31-59.94.Sung, H. H. and Sang, C. P., 1998, “Application of Data Mining Tools to Hotel Data Mart on the Internet for Database Marketing”, Expert Systems with Applications, Vol.15, No.1, Jul., pp. 1-31.95.Umanol, M., et al., 1994, “Fuzzy decision trees by fuzzy ID3 algorithm and its application to diagnosis systems”, Proceedings of the Third IEEE Conference, Vol. 3, pp.2113 —2118.96.Vassiliadis, P. and Sellis, T., 1999, “A Survey of Logical Models for OLAP Databases”, SIGMOD Record, Vol. 28, No.4, pp. 64-69.97.Weiss, S. M. and Indurkhya, N., 1996, “Decision Tree Pruning: Biased or Optimal? ”, AAAI-96/MIT, pp. 626-632.98.Wiig, K. M., 1995, “Knowledge Management Foundations: Thinking about Thinking”, Schema Press, Texas.99.Zaki, M. J. et al., 1997, “New Algorithms for Fast Discovery of Association Rules”, American Association for Artificial Intelligence (www.aaai.org).100.Zhang, S., et al., 1998,“A Mining Model Based on Piatesky-Shapiro’s Argument”.
|