跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 22:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張國雄
研究生(外文):Kuo-Hsiung Chang
論文名稱:商情知識發現法於零售業資訊中介體之研究
論文名稱(外文):A Study of Market Knowledge Discovery in Retail Infomediary
指導教授:李昇暾李昇暾引用關係
指導教授(外文):Sheng-Tun Li
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:資訊管理所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:121
中文關鍵詞:商情知識分享資料探勘灰色理論資訊中介體
外文關鍵詞:grey theorymarket knowledge sharingdata mininginfomediary
相關次數:
  • 被引用被引用:1
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1

摘要
工業革命後以機器代替人工,經濟得以蓬勃發展。隨著科技進步及消費者意識抬頭,更由傳統的工業經濟發展為以客為尊的服務性經濟、知識經濟。電腦與網際網路的興起,不僅為傳統企業或組織帶來極大的衝擊,但也帶來了無限的商機。在此新知識經濟時代來臨之際,知識的創造、流通、加值、分享及創新再利用,成為企業長期核心能力的關鍵因素。業者為減低交易成本和掌握最終消費者的真正需求,希望藉由有效的供應鏈管理等策略,並加上商情知識分享,以期能夠掌握及運用「即時」及「精確」的商品銷售資訊,進而做好存貨管理。對於如何落實的重要工作之一,則是策略層次商情預測。然而預測結果之良窳與資料來源品質關係相當密切。
由於政府已意識到靈活的資訊與知識可以為企業帶來競爭優勢,故積極協助產業界運用資訊科技以提升其競爭力,因此流通業資訊中介體因應而生,可提供彙總型資訊而有助業界專注於客戶真正需要的商品與服務。然而企業在初期引用資訊科技或加入該體制運作,因所蒐集資料數量不多且具有不確定性時或面對商情瞬息萬變之際,並無法以傳統機率論與數理統計方法進行資料探勘;於此,灰色系統理論提供了解決方案,可解決訊息不完全的現象,亦允許資料呈任意的分佈,只要少數的數據,即可來進行預測。有關灰色系統理論的研究已廣泛應用於多個領域。
本研究針對該資訊中介體之彙總性商品銷售資料,運用灰色理論、集群分析以及法則萃取法等資料探勘技術進行商情知識發現,藉以找出潛在有用的樣式訊息。所開採出的商情知識,可提供業者策略性銷售商情資訊與知識,以期掌握及了解消費者對各種商品、價格、通路的反應,並提升個別企業的經營決策品質,進而對其生產、配銷、商品選擇及販賣等活動有所助益。


Abstract
After industry revolution, the economy grows very fast by using machine power to replace labor. Due to the evolution of information technology and the awareness of consumer, it has promoted the traditional industrialized economy to customer-oriented service economy. The emerging technology of computer and Internet not only bring tremendous shocks to traditional organization and industry, but also give them big chances. In the new era of knowledge-dominating economy, the issue of creation, distribution, accumulation, share, and innovation of market knowledge has become the key factor of enterprise’s long-term competency. So the enterprises hope to use effective supply chain management and market knowledge sharing in order to handle and grasp real-time and accurate sale information. One of the important things to do is the strategic prediction of market. However, whether the prediction result is good or not, it’s highly concerned with the source of data.
The government has recognized that diverse information and knowledge can bring better competition advantages to enterprises, and therefore actively helps the industry sharpen their abilities in the application of information technology. The government also builds up a logistics infomediary that provides vendors with summarized product information to help them focus on products and services customers want. In the early stage for adapting information technology or joining the infomediary, the industry can only get rare data or data with uncertainty. When facing the changing market, they can’t mine such data by traditional ways. For this, grey theory provides a potential solution to the incomplete data. It allows arbitrary distribution of data and a few data for prediction. There are many grey theory research topics have been applied in diverse application areas.
In this thesis, we conduct a study of discovering useful patterns from the summarized information in the infomediary by applying data-mining technologies such as, grey theory, clustering and rule extraction. The discovered market knowledge can provide vendors strategic information and knowledge in understanding the behavior of customers in products, prices, and channels. The vendors can thus benefits from the improved decision quality in production, distribution, and sales.


目錄
中文摘要--i
英文摘要--ii
誌謝--iv
目錄--v
表目錄--vii
圖目錄--viii
壹、緒論--1
一、研究動機與研究目的--2
二、研究架構--4
三、研究限制--7
四、論文章節架構--7
貳、文獻探討--8
一、資料、資訊與知識--8
二、資料探勘--10
三、商情知識發現--14
四、商情知識分享--15
五、資訊中介體--18
六、流通業簡介--19
七、灰色系統理論相關應用研究--20
參、商情資料探勘技術--23
一、灰色系統理論--23
(一)灰色系統理論沿革--23
(二)灰生成建模程序--24
二、CRISP-DM方法論--31
三、集群分析法--34
四、時間相互關聯強度分析--35
肆、研究方法與設計--38
一、研究方法--------38
二、資料分析--------38
三、研究設計--------40
伍、實證結果分析----43
一、灰預測結果分析--43
(一)小分類彙總銷售資料預測分析--43
(二)中分類彙總銷售資料預測分析--47
(三)灰預測小結--57
二、商品集群結果分析--58
(一)集群分析法--59
(二)商品銷售額等級分析--62
(三)小結--64
三、商品灰關聯程度分析--65
四、商品銷售時間相互關聯強度分析--70
(一)未考量時間視窗之商品相互間的影響關係--71
(二)兩個時間視窗之商品相互間的影響關係--74
(三)參個時間視窗之商品相互間的影響關係--76
陸、結論--81
一、結論--81
二、研究貢獻--82
三、未來研究建議--83
參考文獻--85
附錄一連續資料記錄間的時間相互關聯強度分析--89
附錄二零售業資訊中介體決策支援系統--105
附錄三論文發表--111


參考文獻1. 王皓正,2000,時間序列資料之查詢與資料發掘--以台灣股市為例,國立臺灣大學,碩士論文。2. 江金山等編著,1998,灰色理論入門,高立圖書股份有限公司,台北。3. 江振瑞,2000,“學習型組織、知識管理與電子供應鏈”,新世紀電子商務技術與實務學術研討會,玄奘人文社會學院資訊處/資訊管理學系主辦。4. 李昇暾,2000,“以資料採礦深化顧客關係管理”,電子化企業經理人報告,遠擎管理顧問公司出版,三月,No. 7,頁37-42。5. 吳思華,1998,“知識流通對產業創新的影響”,第七屆產業管理研討會,政大科技管理研究主辦。6. 孫崇智,2001,水資源區域需水量預測模型之研究化,國立高雄第一科技大學,碩士論文。7. 徐桂祥,1997,灰色系統在商情預測上之研究,國立雲林技術學院,碩士論文。8. 黃在田,2001,灰色預測理論應用於板厚量測最佳精度之研究,國立成功大學,碩士論文。9. 俞宏昌,2000,物流服務品質評估決策系統設計之研究,大葉大學,碩士論文。10. 黃俊英,1992,行銷研究-管理與實務,華泰書局。11. 黃俊英,2000,多變量分析,七版,台北:華泰書局,頁253-289。12. 陳文賢,1997,“資訊管理的研究主題分析”,資訊管理學報,四卷,一期,頁74~79,六月。13. 陳仕倫,2000,飛安事故之灰預測與灰關聯分析,淡江大學,碩士論文。14. 張偉哲、溫坤禮、張廷政,2000,灰關聯模型方法與應用,高立圖書有限公司,台北。15. 楊志維,2001,衛星遙測與灰系統理論應用於水稻營養生長期之監測,國立臺灣大學,碩士論文。16. 蔡武德、楊敏里,1997,現代商業管理,前程企業管理有限公司,台北。17. 鄧聚龍,2000,灰色系統理論與應用,高立圖書股份有限公司,台北。18. 鄧聚龍等編著,1999,灰預測模型方法與應用,高立圖書有限公司,台北。19. 藍玉華,2000,高等教育預算編列模式之探討,中華大學,碩士論文。20. 羅雍盛,2001,台灣雞蛋產地價格預警系統-灰色理論之應用,國立中興大學,碩士論文。21. Applehans, W., Globe, A. and Laugero, G., 1999, Managing knowledge: a practical web-base approach, Addison-Wesley.22. Apte, C. and Weiss, S., 1997, “Data mining with decision tree and decision rules”, Future Generation Computer System, 23, pp197-210.23. Berry, M. J. A. and Linoff, G. S., 2000,資料採礦理論與實務-顧客關係管理的技巧與科學,吳旭志與賴淑貞譯,維科圖書公司,台北。24. Clifton, C. and Thuraisingham, B., 2001, “Emerging standards for data mining”, Computer Standards & Interfaces, 23, pp187-193.25. Cooper, D. R., and Emory, C. W., 1996,企業研究方法,古永嘉譯,華泰書局,台北。26. Fayyad, U. M., et al., 1996, “Advances in Knowledge Discovery and Data Mining”, AAAI Press/The MIT Press, Menlo Park.27. Fayyad, U. M., 1996, “Data mining and knowledge discovery: making sense of data”, IEEE expert, October, Vol. 11, No.5, pp.20-25.28. Foote, N. W., Matson, E., and Rudd, N., 2001, “Managing the knowledge manager”, No. 3, The McKinsey Quarterly, pp121-129.29. Fox, M. S., Chionglo, J. F. and Barbuceanu, M., 1993, “The Integrated supply chain management system”, Manufacturing and Production Systems, Dec 7, pp.1-1230. Gersten, W., Wirth, R. and Arndt , D., 2002, “Predictive modeling in automotive direct marketing: tools, experiences and open issues”, Daimler Chrysler AG, Research & Technology.31. Han, Jiawei, and Kamber, M., 2001, Data mining: concepts and techniques, Morgan Kaufmann publishers.32. Jelinek, F., 1968, Probabilistic Information Theory, McGraw-Hill, New York.33. Karimi, K. and Hamilton, H. J., 2000, “Finding Temporal Relations: Causal Bayesian Networks vs. C4.5”, The Twelfth International Symposium on Methodologies for Intelligent Systems (ISMIS'2000), Charlotte, NC, USA.34. Karimi, K. and Hamilton, H. J., 2002, “RFCT: An association-based causality miner”, The Fifteenth Canadian Conference on Artificial Intelligence (AI'2002), Calgary, Alberta, Canada.35. Karimi, K. and Hamilton, H. J., 2002, “Discovering temporal rules from temporally ordered data”, forthcoming The Third International Conference on Intelligent Data Engineering and Automated Learning (IDEAL'2002), Manchester, UK.36. Kennedy, R. L., et al., 1998, Solving Data Mining Problems through Pattern Recognition, Print Hall PTR.37. King, W. R. and Ko, Dong-Gil., 2001, “Evaluating knowledge management and the learning organization: an information/knowledge value chain approach”, Communications of the AIS, 5(14), pp1-27.38. Lang, K. R. and Whinston A. B., 1999, “A design of a DSS intermediary for electronic markets”, Decision Support Systems, 25 , pp.181-197.39. Li, S.-T. and Shue, L.-Y., 2002, “A Study of Logistics Infomediary in Air Cargo Tracking”, forthcoming Industrial Management and Data Systems.40. Matheus, C. J., Chan, P. K. and Piatesky-Shapiro G., 1993, “Systems for knowledge discovery in databases”, IEEE transaction on knowledge and data engineering, December, Vol. 5, No. 6.41. Mathews, 1999, “From National Innovation Systems to National Systems of Learning: The Case of Technology Diffusion Management in East Asia”, DRUID summer conference paper.42. Morita, H., et al., 1996, “Interval prediction of annual maximum demand using grey dynamic mode”, Electrical Power & Energy Systems, Vol. 18, No.7, pp. 409-413.43. Nonaka, I., Reinmoeller, P. and Senoo, D., 1998, “The ART of Knowledge: Systems to Capitalize on Market Knowledge”, European Management Journal, Vol. 16, No.6, pp. 673-684.44. Ordanini, A. and Pol, A., 2001, “Infomediation and competitive advantage in B2b digital marketplaces”, European Management Journal, Vol. 19, No. 3, pp.276-285.45. Punj, G., and Steward, D. W., 1983, “Cluster analysis in marketing research: review and suggestions for applications”, Journal of Marketing Research, 20, pp.134-148.46. Pyle, Dorian, 1999, Data preparation for data mining, Morgan Kaufmann publishers, Inc. San Francisco, California.47. Richter, F. and Vettel, K., 1995, “Successful Joint Ventures in Japan: Transferring Knowledge Through Organizational Learning”, Long Range Planning, Vol. 28, No. 3, pp.37-45.48. Shaw, M. J., et al., 2001, “Knowledge management and data mining for marketing”, Decision Support Systems, 31, pp.127-137.49. Skyrme, D. J., 1999, Knowledge networking: creating the collaborative enterprise, Butterworth-Heinemann.50. Smith, R. G. and Farquhar A., 2000, “The road ahead for knowledge management: an AI perspective”, AAAI.51. Stewart, T. A., 2001, The wealth of knowledge: intellectual capital and the twenty-first century organization, Doubleday, a division of Random House Inc., N. Y.52. Tan, G. W. and Shaw, M. J., 2001, “Understanding demand information sharing strategies in supply chain network: a simulation study”, International journal of management theory and practices, Vol.2, No. 1.53. Winch, G., 2000, “Knowledge management and competitive manufacturing”, Engineering Management Journal, June, pp.130-134.54. http://posdemo.im.fju.edu.tw/87 商管教材/二流通業的管理活動.htm55. 經濟部商業司-流通產業研究,http://dir.tier.org.tw/002/d1.htm56. 陳若綺,1998,http://www.ibus.com.tw/v2/report/rweek/b/b870501.htm

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top