跳到主要內容

臺灣博碩士論文加值系統

(34.236.192.4) 您好!臺灣時間:2022/08/17 18:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林建宏
研究生(外文):Chien-Hung Lin
論文名稱:狀態空間法於隔減震結構分析上之應用
論文名稱(外文):A unified state-space approach for the dynamic analysis of structures with energy dissipation or isolation devices
指導教授:盧煉元盧煉元引用關係
指導教授(外文):L.-Y Lu
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:營建工程所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:227
中文關鍵詞:減震非線性數學模型消能隔震狀態空間法
外文關鍵詞:state-spaceisolatedenergy dissipationmodelnon-linear
相關次數:
  • 被引用被引用:8
  • 點閱點閱:534
  • 評分評分:
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:3
近年來利用隔震及消能減震技術,以提昇結構物耐震能力之方式,已逐漸為工程界所接受,惟結構隔震及消能減震之設計方法與傳統結構耐震設計之方式並不相同,加上隔震及消能減震元件之複雜與多樣性,遂造成隔震與消能減震結構分析與設計上之種種困難。故本文經過隔震與消能元件之實例探討和種類分析後,提出三種基本型之元件數學模型,利用此三種元件之模型並配合彈簧元件,經過串聯或並聯之程序後即可模擬出大多數之隔震及消能元件,最後並提出一隔震消能元件數學模型之通用表示式,透過該式則所有之隔震及消能元件均能以同一通用模型來加以模擬之,因此解決了隔震消能元件之多樣及複雜性之問題,並使得元件模型與結構動力方程式結合後,無論使用何種隔震消能元件,均為同一形式之運動方程式。
本文拋棄以往分析非線性結構所慣用之直接積分法及迭代方式,而利用狀態空間法與二元系統之分析技巧,將結構之一階微分運動方程式與一通用型之隔震消能元件數學模型相互結合,並經兩系統間之狀態與力的平衡,不經迭代過程即可解得結構之非線性歷時反應,因此分析之效率相當高。
另本法經由解得Duffing equation之過程與Newmark數值方法和Krylov-Bogoliubov解析方法解得之結果交互比對,結果顯示只要元件之數學模型能精確的模擬隔震消能元件之遲滯消能行為,則使用本法在分析隔震消能結構時,雖時間步幅取的很大,仍能保持其正確性與穩定性,且此點在多自由度之隔震消能結構分析上亦透過數值方法得到證實,顯示使用本法之優越性。
Although presently the technologies of base isolation and energy dissipation have been widely used to reduce the seismic responses of structures, the methods of design and analysis for these structures are different from those of conventional structures. Because of the diverse features and mechanical characteristics of isolators and energy dissipation devices, the analysis of these structures is more complicated and difficult. In this research work, a unified state-space approach for the dynamic analysis of structures with energy dissipation or isolation devices is proposed.
Discarding the approaches for conventional non-linear structure analysis such as the direct integration and iteration methods, the present method adopts the technique of dual-system analysis, in which the nonlinear devices and the main structural system are treated as two separated systems. By casting the mathematic models of the nonlinear devices in a specific form, and combined with the dynamic equation of the main structural system expressed in a state-space form, the proposed method can deal with the analysis of structures with various types of seismic protection devices, includes: metallic yielding, viscous elastic and friction types etc. The equation of dynamics can then be solved via the conditions of deformation compatibility and forces equilibrium. By doing so, iteration process required by common nonlinear structural analysis can be avoided, so the efficiency of computation can be greatly improved.
The computational accuracy and efficiency of the proposed method are proved by solving the response of a nonlinear single degree of freedom described by Duffing equation. The solution is compared with those obtained from the Newmark numerical method and Krylov-Bogoliubov analytical method. The result shows that the method is numerically stable and accurate, even though a large time interval within the analysis is adopted.
一、前言…………………………………………………1
1.1 研究動機……………………………………………1
1.1.1 傳統之韌性設計與隔減震設計之不同…………1
1.1.2 基礎隔震…………………………………………2
1.1.3 消能減震…………………………………………3
1.1.4 隔震與消能結構之特性…………………………4
1.2 文獻回顧……………………………………………4
1.2.1 基礎隔震…………………………………………5
1.2.2 消能減震…………………………………………6
1.2.3 分析與設計方法…………………………………8
1.3 研究目的與內容……………………………………11
二、結構之隔震與消能元件……………………………15
2.1 元件之實例與種類…………………………………15
2.1.1 基礎隔震…………………………………………15
2.1.2 消能減震…………………………………………16
2.2 元件模型導論………………………………………17
2.2.1 降服型元件………………………………………18
2.2.2 黏滯與黏彈型元件………………………………18
2.2.3 摩擦型元件………………………………………19
2.3 元件模型之組合與應用……………………………21
三、隔震消能結構之分析方法…………………………37
3.1 隔震消能結構之特性………………………………37
3.2 傳統之隔震消能結構分析設計方法………………38
3.2.1 循環分析法………………………………………38
3.2.2 直接積分法………………………………………40
3.2.3 能量平衡法………………………………………41
3.3 二元分析法之概念…………………………………43
四、狀態空間法與元件之數學模型……………………47
4.1 運動方程式…………………………………………47
4.1.1 位形空間之運動方程式…………………………47
4.1.2 狀態空間之運動方程式…………………………48
4.1.3 狀態空間法之優越性……………………………52
4.2 元件之數學模型通式………………………………54
4.2.1 連續時間之元件內力方程式……………………54
4.2.2 離散時間之元件內力方程式……………………55
4.3 元件模型之係數……………………………………58
4.3.1 降伏型元件………………………………………58
4.3.2 泛黏彈型元件……………………………………61
4.3.3 傳統摩擦型元件…………………………………63
4.3.3.1 元件模型之假設………………………………63
4.3.3.2 純摩擦型元件…………………………………65
4.2.4.3 彈塑型摩擦元件………………………………66
4.3.3.4 降伏型摩擦元件………………………………67
4.3.4 單一函數形式之摩擦元件………………………68
4.3.4.1 彈塑型摩擦元件………………………………68
4.3.4.2 降伏型摩擦元件………………………………70
4.3.5 速度相依型之摩擦元件…………………………71
4.3.5.1 Constantinou模型……………………………71
4.3.5.2 本文建議之摩擦係數模型……………………73
五、結構分析方法與數值驗證…………………………107
5.1 由狀態及力平衡方程式求解結構之反應…………107
5.2 數值驗證例…………………………………………111
5.3 多自由度之消能結構分析例………………………114
5.3.1 降伏型消能結構…………………………………114
5.3.2 黏彈型消能結構…………………………………115
5.3.3 摩擦型消能結構…………………………………116
5.3.3.1 降伏型摩擦元件………………………………117
5.3.3.2 彈塑型摩擦元件………………………………118
六、滑動隔震結構之分析方法…………………………165
6.1 滑動隔震之原理及假設……………………………165
6.2 隔震支承回復力之模擬……………………………166
6.2.1 任意曲面之回復力………………………………166
6.2.2 摩擦單擺支承之回復力…………………………167
6.2.3 變頻式摩擦單擺支承之回復力…………………168
6.2.4 錐形摩擦單擺支承之回復力……………………170
6.3 滑動隔震元件之數學模型…………………………172
6.3.1 連續時間之數學模型……………………………172
6.3.2 離散時間之數學模型……………………………173
6.4 分析應用例…………………………………………176
6.4.1 摩擦單擺支承……………………………………177
6.4.2 變頻式摩擦單擺支承……………………………177
6.4.3 錐形摩擦單擺支承………………………………178
6.4.4 綜合結果…………………………………………179
七、結論與展望…………………………………………205
7.1 結論…………………………………………………205
7.2 展望…………………………………………………207
參考文獻…………………………………………………209
附錄A 指數矩陣級數法解狀態方程式之連續時間解…217
附錄B 狀態連續時間解的離散化………………………219
附錄C 擾動向量之線性內插……………………………221
附錄D 絕對值之微分……………………………………225
[1]王文清,1999,摩擦式隔震結構之動態行為研究,國立成功大學土木工程研究所,博士論文。[2]吳波、李惠,1997,建築結構被動控制的理論與應用,哈爾濱工業大學出版社。[3]吳賴雲、鍾立來、王彥博等,2001,"摩擦加勁消能結構之理論分析與耐震效益",結構工程,第十六卷,第一期,第27~45頁,3月。[4]呂高豐,2001,低降服鋼消能器之行為研究,國立高雄第一科技大學營建工程研究所,碩士論文。[5]周福霖,1997,工程結構減震控制,地震出版社。[6]林錦隆,2001,半主動摩擦阻尼器於結構防震應用之探討,國立高雄第一科技大學營建工程研究所,碩士論文。[7]唐治平、任萬鈞,1999,"摩擦單擺支承隔震橋樑耐震研究",結構工程,第十四卷,第一期,第15~40頁,3月。[8]徐德修等,1999,油壓阻尼器之研發及應用,中興工程顧問社。[9]張國鎮、宋祖德、賴明來,1992,"黏彈性阻尼器在抗震結構上之應用",結構工程,第七卷,第一期,第21~39頁,3月。[10]張國鎮、林裕淵,1997,"加黏彈性阻尼器結構之耐震設計",結構工程,第十二卷,第一期,第65~77頁,3月。[11]張國鎮、林裕淵,1997,"加黏彈性阻尼器結構之試驗與分析",結構工程,第十二卷,第一期,第51~64頁,3月。[12]張國鎮、許昌軍、賴明來,1998,"懸吊式屋頂結構加裝黏彈性阻尼器之實例",結構工程,第十三卷,第四期,第5~18頁,12月。[13]陳予恕、唐雲等,2000,非線性動力學中的現代分析方法,科學出版社。[14]陸偉民、劉雁,1995,結構動力學及其應用,同濟大學出版社,1995年。[15]葉祥海等,1999,建築物隔震消能規範之示範計劃,內政部建築研究所專題研究計劃成果報告882015。[16]蔡克銓、周中哲,1996,"三角形鋼板消能器之塑性模型與耐震性能",中國土木水利工程學刊,第八卷,第一期,第45~54頁。[17]蔡克銓、洪志評,1993,"三角形鋼板加勁阻尼裝置之耐震反應",中國土木水利工程學刊,第五卷,第四期,第355~365頁。[18]蔡克銓、栗正暐、王亭復,1995,"實用型非線性靜動態平面架構分析程式DRAIN2D+與VIEW2D之發展與應用",結構工程,第十卷,第一期,第29~43頁,3月。[19]蔡克銓、栗正暐,1994,含鋼板消能裝置之子結構擬動態試驗研究,財團法人中興工程科技研究發展基金會。[20]蔡克銓、黃立宗,1996,"含遲滯消能裝置構架之耐震參數研究",中國土木水利工程學刊,第八卷,第三期,第343~353頁。[21]蔡克銓、黃立宗,1994,能量方法在結構耐震設計上之應用研究,財團法人中興工程科技研究發展基金會。[22]蔡克銓,1993,"三角形鋼板消能器之理論、實驗與應用",結構工程,第八卷,第四期,第3~19頁,12月。[23]蔡克銓,1998,遲滯消能器在結構隔減振技術之應用,國家地震工程研究中心,報告編號NCREE-98-011。[24]蔡崇興、陳貴麒,1999,"高樓使用混合型消能器之耐震研究",中國土木水利學刊,第十一卷,第二期,第289~298頁。[25]蔡崇興、鍾立來等,1999,"強化式加勁阻尼鋼板消能系統",土木工程技術,第三卷,第四期,第39~53頁。[26]盧煉元、楊永斌,1996,設備在滑動隔震結構中受簡諧地表運動下之動力特性研究,國家地震工程研究中心,NCREE-96-010,1996年5月。[27]盧煉元、鍾立來,1999,"國內外結構控制技術之進展",防災科技,4月。[28]盧煉元,張婉妮,2000,"重直地震力對滑動式隔震結構之影響",第五屆結構工程研討會,第251-259頁。[29]盧煉元、張婉妮、張簡嘉賞,2001,近斷層地區重要建物之隔震防災策略研究(I),行政院國家科學委員會補助專題研究計畫成果報告,NSC89-2218-E327-003,12月。[30]盧煉元、張婉妮,2001,重直地震力對滑動式隔震結構之影響,國家地震工程研究中心,NCREE-01-025,10月。[31]盧煉元、林建宏,2002,"摩擦阻尼器遲滯消能行為之模擬與分析",第六屆結構工程研討會,屏東墾丁,Paper No. M40。[32]盧煉元、林建宏,蔡俊祥,2002,"摩擦阻尼器摩擦材料之消能特性實驗研究",第六屆結構工程研討會,屏東墾丁,Paper No. M28。[33]鍾立來、王彥博、楊創盛,1996,"結構動力數值分析之穩定性及精確度",結構工程,第十一卷,第四期,第55~66頁,12月。[34]鍾立來,1993,"結構主動控制之狀態空間系統",結構工程,第八卷,第二期,第89~98頁,6月。[35]韓茂樹、蔡克銓,1998,"含遲滯消能裝置隔震系統之參數分析與設計方法",中國土木水利學刊,第十卷,第四期,第651~659頁。[36]韓茂樹、蔡克銓,1997,"遲滯型消能隔震系統之試驗研究",結構工程,第十二卷,第四期,第39~58頁。[37]Almazan, Jose L. and Llera, Juan C. and Inaudi, Jose A., 1998, "Modeling Aspects of Structures Isolated with the Frictional Pendulum System", Earthquake Engineering and Structural Dynamics, Vol. 27,pp. 845-867.[38]Bozzo, L. and Barbat, A. H., 1995, "Nonlinear Response of Structures with Sliding Base Isolation", Journal of Structural Control, Vol. 2, No. 2, pp. 59-77.[39]Chang, Shuenn-Yih anf Mahin, Stephen A., 1994, "Velocity Depending Effect in FPS Isolators", Journal of the Chinese Institute of Engineers, Vol. 17, No. 4, pp. 537-547.[40]Constantinou, M. C. and Soong, T. T. and Dargush, G. F., 1998, Passive Energy Dissipation Systems for Structural Design and Retrofit, MCEER Monograph No.1.[41]Constantinou, M. C. and Mokha, A and Reinhorn, A. M., 1990, "Teflon Bearings in Base Isolation II: Modeling", Journal Structural Engineering, ASCE, 116(2), 1990, pp455-474.[42]Constantinou, M. C. and Kartoum, A. and Reinhorn, A. M. and Bradford, P., 1992, "Sliding Isolation System for Bridge: Experimental Study", Earthquake Spectra, Vol. 8, No. 3, pp. 321-344.[43]Fu, Yaomin and Cherry, Sheldom, 2000, "Design of Friction Damped Structures Using Lateral Force Procedure", Earthquake Engineering and Structural Dynamics, Vol. 29, pp. 989-1010.[44]Fujita, T., 1998, "Seismic Isolation of Civil Buildings in Japan", Progress in Structural Engineering and Materials, Vol. 1, No. 3, pp. 295-300.[45]Hanson, Robert D. and Soong, T. T., 2001, Seismic Design with Supplemental Energy Dissipation Devices, EERI MNO-8.[46]HITEC (Highway Innovative Technology Evaluation Center), 1998, Evaluation Findings for Earthquake Protection Systems, Inc. Friction Pendulum Bearings, Technical Evaluation Report, HITEC 98-07 #40370.[47]Hwang, J. S. and Ku, S. W., 1997, "Analytical Modeling of High Damping Rubber Bearings", Journal of structure Engineering, ASCE, Vol. 123, No. 8, August.[48]Inaudi, Jose A. and Llera, Juan C., 1992, Dynamic Analysis of Nonlinear Structures Using State-Space Formulation and Partitioned Integration Schemes, Earthquake Engineering Research Center, University of California, Report No.UCB/EERC-92/18, Berkeley, California,U.S.A.[49]Llera, Juan C. and Almazan, Jose L., 1998, "Some Important Aspects in the Modeling of Frictional Pendulum Devices", 6th U.S. National Conference on Earthquake Engineering.[50]Lu, L. -Y. and Yang, Y. -B., "Dynamic Response of Equipment in Structures with Sliding Support", Earthquake Engineering and Structural Dynamics, Vol. 26, pp. 61-77.[51]Lu, L. -Y. and Shih, M. -H. and Chien Chang, C.-S. and Chang, W.-N., 2002, "Seismic Performance of Sliding Isolated Structures in Near-Fault Areas", The 7th US National Conference on Earthquake Engineering, Boston, MA, USA.[52]Lu, L.-Y., 2001, "Modal Control of Seismic Structures Using Augmented State Matrix ", Earthquake Engineering and Structural Dynamics, Vol.30, pp.237-256.[53]Mokha, A. S. and Constantinou, M. C. and Reinhorn, A. M., 1990, Experimental Study and Analytical Prediction of Earthquake Response of A Sliding Isolation System with A Spherical Surface, National Center for Earthquake Engineering Research Technical Report, NCEER-90-0020, U.S.A.[54]Mokha, A. S. and Constantinou, M. C. and Reinhorn, A. M., 1993, "Verification of Friction Model of Teflon Bearings under Triaxial Load", Journal of Structural Engineering, Vol. 119, No. 1, pp. 240-261.[55]Mokha, Anoop and Constantinou, M. C. and Reinhorn, A. M.,et al, 1991, "Experimental Study of Friction-Pendulum Isolation System", Journal of Structural Engineering, Vol. 117,No. 4,pp. 1201-1217.[56]Mokha, A. S. and Constantinou, M. C. and Reinhorn, A. M., "Teflon Bearings in Base Isolation I: Testing", Journal Structural Engineering, ASCE, 116(2), 1990, pp438-454.[57]Mostaghel, N. and Khodaverdian, M.,1987, "Dynamics of Resilient-Friction Base Isolator (R-FBI)", Earthquake Engineering and structural Dynamics, Vol. 15, pp. 379-390.[58]Mostaghel, N. and Khodaverdian, M.,1988, "Seismic Response of Structures Supported on R-FBI System", Earthquake Engineering and structural Dynamics, Vol. 16, pp. 839-854.[59]Naeim, Farzad and Kelly, James M., 1999, Design of Seismic Isolated Structures - From Theory to Practice, JOHN WILEY & SONS.[60]Nagarajaiah, S. and Li, C. and Reinhorn, A. M. and Constantinou, M. C., 1993, 3D-BASIS-TABS: Computer Program for Nonlinear Dynamic Analysis of Three Dimensional Base Isolated Structures, National Center for Earthquake Engineering Research Technical Report, NCEER-93-0011, U.S.A.[61]Nagarajaiah, S. and Reinhorn, A. M. and Constantinou, M. C., 1991, 3D-BASIS: Nonlinear Dynamic Analysis of Three Dimensional Base Isolated Structures: Part II, National Center for Earthquake Engineering Research Technical Report, NCEER-91-0005,U.S.A.[62]Pall, A. S., R. Pall, 1993, "Friction-Dampers Used for Seismic Control of New and Existing Building in Canada", Proceedings, ATC 17-4, Seminar on Seismic Base Isolation, Passive Engergy Dissipation and Active Control, San Francisco, Vol. 2, pp. 675-686.[63]Pall, A., R. Pall, 1996, "Friction-Dampers for Seismic Control of Building - A Canadian Experience", Proceedings of the 11th World Conferences on Earthquake Engineering, Mexico, paper no. 497.[64]Pasquin, Claude, H. Charania, R. Steele, R. Pall and A. Pall, 1998, "Fricton-Dampers for Seismic Control of Selkirk Water Front Offices, Victoria", Proceedings of the 6th U.S. National Conference on Earthquake Engineering, Sheraton Seattle Hotel, Seattle, Washington.[65]Pranesh, M. and Sinha, Ravi, 2000, "Aseismic Design of Tall Structures Using Variable Frequency Pendulum Oscillator", 12th world Conference on Earthquake Engineering, New Zealand, paper No. 0284.[66]Pranesh, M. and Sinha, Ravi, 2000, "VFPI: An Isolation Device for Aseismic Design", Earthquake Engineering and Structural Dynamics, Vol. 29, pp. 603-627.[67]Skinner, R. Ivan and Robinson, William H. and McVerry Graeme H., 1993, An Introduction to Seismic Isolation, JOHN WILEY & SONS.[68]Soong, T. T. and Dargush, G. F., 1997, Passive Energy Dissipation Systems in Structural Engineering, JOHN WILEY & SONS.[69]Stefanou, G. D., 1995, "Dynamic Response Analysis of Nonlinear Structures Using Step-by-Step Integration Techniques", Computers & Structures, Vol. 57, No. 6, pp. 1063-1070.[70]Sues, R. H. and Mau, S. T. and Wen, Y. K., 1988, "Systems Identification of Degrading Hysteretic Restoring Forces", Journal of Engineering Mechanics, Vol. 114, No. 5., pp.833-846.[71]Wang, Y. P. and Chung, L. L. and Liao, W. H., 1998, "Seismic Response Analysis of Bridges Isolated with Friction Pendulum Bearing", Earthquake Engineering and structural Dynamics, Vol. 27, pp. 1069-1093.[72]Wilson, Edward L., 2000, Three Dimensional Static and Dynamic Analysis of Structures, Computers and Structures Inc., Berkeley, California, U.S.A.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top