跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 13:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張簡嘉賞
研究生(外文):Chia-Shang Chang-Chen
論文名稱:滑動隔震結構受近斷層震波行為之理論分析及振動台實驗驗証
論文名稱(外文):Analysis and Shaking Table Experiment of Near Fault Ground Motion onStructures with Frictional Seismic Isolators
指導教授:盧煉元盧煉元引用關係
指導教授(外文):Lan-yen Lu
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:營建工程所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:274
中文關鍵詞:近斷層滑動隔震振動台實驗摩擦單擺支承錐形摩擦單擺支承
外文關鍵詞:near-faultisolated structureshaking table te
相關次數:
  • 被引用被引用:16
  • 點閱點閱:474
  • 評分評分:
  • 下載下載:96
  • 收藏至我的研究室書目清單書目收藏:2
隔震技術於土木結構之應用在國外已超過二十年,且經過實際地震考驗為有效之減震方法。唯隔震技術應用於近斷層建物之研究尚嫌不足,在缺乏足夠實測資料佐証下,目前研究者對近斷層隔震之安全與效益仍無具體之定論。近年由實測資料之調查得知,近斷層震波與遠域震波具有顯著之差異。由於一般傳統隔震結構之隔震週期介於2~3秒間,其值恰好落於近域震波速度脈衝之常見週期內,因此儘管傳統之滑動隔震系統(例如摩擦單擺支承, FPS)對於遠域震波有優越之隔震效果,但在近域震波作用下之隔震效果卻不儘理想,其最大原因係一般隔震系統之隔震週期為一固定值,無法隨地表運動之強弱而變化,故對具長週期特性之近域震波隔震效果不佳。有鑑於此,本文以數值模擬之方法,探討傳統FPS與二種具變曲率之滑動摩擦隔震支承對近、遠域震波之減震效果。文中所探討之二種變曲率隔震支承,一為變頻式摩擦單擺支承(Variable Frequency Pendulum System ,VFPI),另一為錐形摩擦單擺支承(Conical Friction Pendulum Isolator, CFPI)。其中,變頻式摩擦單擺支承(VFPI)之滑動面曲率半徑為一隨隔震器中心位置而變化之連續函數,位置越遠週期遠長;而錐形摩擦單擺支承(CFPI)之滑動面在某一固定位移範圍內與FPS具完全相同之曲率半徑,一旦隔震盤滑動位移量超過此範圍時,則其滑動面即變成一斜面。此外,在近斷層震波特性影響下,三種隔震器仍有可能造成極大之基礎滑動位移,因此在進行模擬時亦探討不同隔震器加入阻尼器後之結構反應。
此外,本文亦以振動台實驗比較近、遠域震波對隔震結構之行為,以探討近域震波對滑動式隔震結構之影響。實驗參數之變化包括:隔震週期、隔震層之摩擦係數、震波PGA值等,以探討不同隔震系統組合在不同地震強度下之隔震效果。由實驗發現,因受近斷層震波具有長週期脈衝之特殊效應所致,在相同PGA值下,近斷層震波會加大滑動隔震結構之最大基礎位移量與上部結構之基底剪力,此點於結構隔震設計與應用時應格外注意。
Presently, there are thousands of base isolated structures constructed worldwide. The number of the isolated structures has been increasing rapidly in the last few years primarily due to the maturity of the isolation technology itself and also human awareness of earthquake risk. Some of these constructed cases were even subjected to real-live earthquakes and proved the effectiveness of the technology. However, very few of them were ever subjected to near-fault ground waves that possess very different characteristics and response spectra from those of far-field waves. The response of a sliding isolated structure subjected to a set of near-fault and far-field earthquakes are simulated and compared. It is shown that the isolator displacement can be considerably enlarged in a near-fault earthquake due to the long-period velocity pulse possessed in the near-fault earthquake. Furthermore, in order to improve the performance of near-fault seismic isolation, three types of sliding isolators with the sliding surfaces of different geometry are studied and their advantages and disadvantages are discussed. The effect of using supplemental viscous damping together with these isolators is also investigated. The study shows that for a near-fault earthquake, sliding isolation with supplemental damping is beneficial in reducing both maximum base drift and structural acceleration, although the damping may have a negative effect in the isolation for far-field earthquakes.
In order to study the effect of a near-fault ground motion on a sliding isolated structure, in this paper, a shaking-table test was conducted. Both near-fault and far-field ground accelerations were imposed on a full-scale model isolated by a friction pendulum system, so the structural response can be compared. Also, a set of artificially simulated pulse waves with variable pulse periods was also imposed on the isolated structure, in order to study the effect of pulse periods. Furthermore, in order to reduce the isolator displacements, a supplement viscous damper was added to the isolation system. The study shows that for a near-fault earthquake, sliding isolation with supplemental damping is beneficial in reducing both maximum base drift, even though the damping may increase the structural acceleration in a far-field earthquake.
目 錄
中文摘要…………………………………………………………………...Ⅰ
英文摘要…………………………………………………………………...Ⅲ
誌謝..……………………………………………………………….……....Ⅴ
目錄..……………………………………………………………….……....Ⅵ
表目錄……………………………………………………………...……ⅩⅡ
圖目錄……………………………………………………………….…..ⅩⅢ
照片目錄……………………………………………………….……..ⅩⅩⅡ
苻號說明…………………………………………………………...…ⅩⅩⅢ
[第一篇 滑動隔震結構受近斷層震波行為之理論分析]
第一章 緒論…………………………………………………………….…01
1.1研究動機與目的………...…………………..……………………......01
1.2 文獻回顧……………..………………………..……………..………02
1.2.1 傳統結構耐震設計法…………………………………………….02
1.2.2 結構控制技術…………………………………………………….03
1.2.3 摩擦單擺隔震系統……………………………………………….06
1.2.4 近斷層震波特性………………………………………………….08
1.3 研究內容……….…………...….…………………….……………....09
第二章 傳統滑動隔震結構之分析方法………………………………….15
2.1理論分析模型之建立………………………………………………...15
2.2 運動方程式之推導…………………...……...………………………16
2.3滑動隔震結構之數值模擬方法……………………………………...17
第三章 傳統滑動式隔震支承對近、遠域震波之減震效果評估……….22
3.1近、遠域震波之選擇…….……………………………...………..….23
3.2傳統摩擦單擺支承對遠域震波之隔震效果……………….………..24
3.2.1調整PGA至0.33g之結構反應……………….………………….24
3.2.2變化不同PGA值下之模型結構反應……………………………25
3.3傳統摩擦單擺支承對近域震波之隔震效果………………......…….26
3.3.1調整PGA至0.33g之結構反應……….…………………..……..26
3.3.2變化不同PGA值下之模型結構反應……………….……………27
3.4綜合討論……………...……………………………………….……...28
第四章 變曲率滑動式隔震結構分析…………………………………….51
4.1變曲率摩擦單擺支承…………………….…………..………………51
4.2錐形摩擦單擺支承………………..…………………….……………53
4.3數值分析方法………………….………………………………….….54
4.4錐形摩擦單擺支承db值之參數研究………………………..………57
第五章 變曲率滑動式隔震支承對近、遠域震波之隔震效果評估…….65
5.1變曲率滑動式隔震支承對遠域震波之隔震效………...……………65
5.2變曲率滑動式隔震支承對近域震波之隔震效……………...………66
5.3評估三種隔震器在不同隔震週期下的減震效果…………………...69
5.3.1隔震週期Tb=2.0秒………………………………………………69
5.3.2隔震週期Tb=3.0秒………………………………………………70
5.3綜合討論……………..…………………………….…………………71
第六章 含增補阻尼之隔震系統對近、遠域震波之隔震效果評估…….89
6.1模型結構之設定……………………………………………………...89
6.2增補阻尼對隔震結構之影響……………………………...…………90
6.3混合型隔震系統對遠域震波之隔震效果評估…………...…………91
6.4混合型隔震系統對近域震波之隔震效果評估…………………...…94
6.5評估三種混合型隔震系統在不同隔震週期下之減震效果……...…96
6.5.1隔震週期Tb=2.0秒………………………………………………96
6.5.2隔震週期Tb=3.0秒………………………………………………97
6.6綜合討論……………………………………………………………...97
第七章 結論…………………………….…………………………..……128
[第二篇 滑動隔震結構受近斷層震波行為之振動台實驗驗証]
第一章 緒論……………………………………………………….……..132
1.1研究動機與目的………...…………………………………….…….132
1.2 研究內容與範圍………………………………………………..…..132
第二章 元件測試…………………………………………………….…..134
2.1摩擦單擺支承元件測試……………………………………….……134
2.1.1摩擦支承試體描述…………..…..………………………………134
2.1.2摩擦單擺支承元件測試構架與實驗設備…………..……..……135
2.1.3元件測試實驗方法與參數設定………….…………………...…136
2.1.4元件測試實驗結果…………………………………..……..……137
2.1.5綜合討論…………..……..…………………….………………...139
2.2黏滯阻尼器之元件測試……………………..…………………...…140
2.2.1油壓阻尼器之試體描述與實驗設備……………………………140
2.2.2阻尼器元件測試實驗結果………………..……..………………141
第三章 單層樓固定基礎之振動台實驗………………………………...158
3.1單層樓實驗結構系統識別………………………………………….158
3.2單層樓固定基礎實驗……………………………………………….159
3.2.1輸入震波………….…………………………………...…………159
3.2.2感測計之配置………………………….…………….…………..159
3.2.3實驗方法與參數設定…………….…………………..………….160
3.2.4固定基礎實驗結果分析…………………………………..……..161
第四章 隔震結構之振動台實驗………………………………….……..178
4.1實驗構架與實驗設備…………………………………………….…178
4.2輸入震波……………………………..………………………..….…178
4.3實驗結果分析…….…………………………………………………179
4.4理論分析與振動台實驗結果比對………………………………….181
4.4綜合討論………………………………………………………….…183
第五章 加裝黏滯型阻尼器之隔震結構振動台實驗……………..…….209
5.1實驗構架與實驗設備…………………………..…………………...209
5.2輸入震波……………………………………..…………………...…209
5.3實驗結果分析…………………………..………………………...…210
5.4理論分析與振動台實驗結果比對…………………………….……212
5.5 綜合討論……………………………………………………………214
第六章 結論……………………………………………………………...242
參考文獻………………………………………………………………….244
1.Chai, J. F. and C. H. Loh, 2000, “Near-fault ground motion and its effect on civil structures,” International workshop on mitigation of seismic effects on transportation structures, July 12-14, Taipei, Taiwan, R.O.C. pp.70-81.2.Iemura, H., T. Mikami and Y. Takahashi, 2000, “Strength and ductility demand of near-field earthquake motions,” International Workshop on Annual Commemoration of Chi-Chi Earthquake, Taipei, Taiwan, September 18-20, pp.501-507.3.Liao, W. I., C. H. Loh and S. Wan, 2000, “Responses of isolated bridges subjected to near-fault ground motions recorded in Chi-Chi earthquake,” International Workshop on Annual Commemoration of Chi-Chi Earthquake, September 18-20, Taipei, pp.371-380.4.Bozorgnia, Y., S. A. Mahin and A. G. Brady, 1998, “Vertical response of twelve structures recorded during the Northridge earthquake, “ Earthquake Spectra, Vol. 14, No. 3, August, pp.411-432.5.Loh, C. H., 1999, “Interpretation of structural damage in 921 Chi-Chi-earthquake,” Proceedings of International Workshop on Chi-Chi, Taiwan Earthquake of September 21, 1999, Dec. 14-17, pp.5-1~5-77.6.葉超雄, 1999,「近斷層建築物設計地震力之研究」, 921集集地震與建築物耐震技術研討會論文集,內政部建研所企劃, 12月,台北.7.盧煉元, 張婉妮, 2000, “垂直地震力對滑動式隔震結構之影響” 國家地震工程研究中心,NCREE-01-025。8.Lu, L. Y. and M. H. Shih and C. S. Chang Chien and W. N. Chang, 2001, “Seismic Response of Base Isolation Structures in Near-Fault Areas (Ⅱ) “ First International Conference on Planning and Design , November 3-4,Tainan,Taiwan.9.Lu, L. Y. and M. H. Shih and C. S. Chang Chien and W. N. Chang (2001) “Seismic Performance of sliding Isolated Structures in Near-Fault Areas”, The 7th National Conference on earthquake Engineering , Boston , USA , July 21-25.10.Soong, T. T. ,1990 “Active Structural Control: Theory & Practice. “, John wiley & Sons, Inc., New York.11.盧煉元、鍾立來,1999, “國內外結構控制技術之進展”,防災科技土木技術,第二卷第四期.12.Chung, L. L., R. C. Lin, T. T. Soong and A. M. Reinhorn, 1989, “Experiments on active control for MDOF seismic structures”, Journal of Engineering Mechanics, ASCE, vol. 115, No. 8, pp.1609-1627.13.Reihorn, A. M., T. T. Soong, R. C. Lin, Y. P. Wang, Y. Fukao and M. Nakai, 1989, “1:4 scale model studies of active tendo systems and active mass dampers for aseismic proptection”, Report NCEER-89-0026, National Center for Earthquake engineering Research, Buffalo, N. Y. 14.Lu, L. Y. and Y. B. Yang, 1997, “Dynamic Response of Equipment in Structures with Sliding Support,” Journal of Earthquake Engineering and Structural Dynamics, vol. 26, No. 1, pp.61-76.15.Tsai, C. S., 1996, “FEM considering local bending effects for flat sliding isolators,” Computers and Structures, vol. 61. No. 6, pp.1013-1024.16.Jangid, R. S., 1996, “Seismic response of sliding structures to bidirectional earthquake excitation.” Earthquake Engineering and Structural Dynamics, vol. 25, pp.1301-1306.17.Constantinou, M. C., A. Kartoum, A. M. Reinhorn and P. Bradford, 1992, “Sliding isolation system for bridges: experimental study,” Earthquake Spectra, vol. 8, No. 3, pp.321-344.18.Hwang, J. S. and S. W. Ku, 1997, “Analytical modeling of high damping rubber bearings,” Journal of Structure Engineering, ASCE, vol. 123, No. 8, August.19.Hwang, J. S. and J. C. Wang, 1998, “Seismic response prediction of HDR bearing using fractional derivative Maxwell model.” Engineering Structures, vol. 20, No. 9, pp.849-856.20.Wang, Y. P. L. L. Chung, W. H. Liao, 1998, “Seismic response analysis of bridges isolated with friction pendulum bearing,” Earthquake Engineering and Structural Dynamics, vol. 27, pp.1069-1093.21.Mostaghel, N. and M. Khodaverdian, 1987, “Dynamics of resilient-friction base isolator (R-FBI),” Earthquake Engineering and Structural Dynamics, vol. 15, pp.379-390.22.Sims N. D. , R. Stanway , D. J. Peel, W. A. Bullough and A. R. Johnson, 1999, “ Controllable Viscous Damping : an experimental study of an lectroheological long-stroke damper under proportional feed back control”, Smart Material and Structure.23.Victor, A Z. and L. Stanley,2000,”Seismic Isolation for Strong ,Near-field Earthquake Motions”,Progress in 12th World Conference on Earthquake Engineering, No.0088.24.王彥博,1998,”鋼結構裝置隔震消能元件地震反應實測與分析-摩擦單擺支承結構之耐震評估與控制(Ⅱ)”, 中華民國行政院國家科學委員會專題研究計畫成果報告.25.Wang, Y. P. and W. H. Liao, 2000, ”Dynamic analysis of sliding structures with unsynchronized support motion,” Earthquake Engineering and Structural Dynamics, vol. 29, pp.297-313.26.王彥博,2002,”建築結構之隔震設計”, 結構耐震補強與隔震新技術研討會論文集, 3月, 新竹.27.Pranesh, M. and R. Sinha, 2000 “VFPI:an isolation device for a seismic deign. “Earthquake Engineering and Structural Dynamics, Vol. 29, 603-627.28.Makris, N. and Y. Roussos, 1998, “Rocking response and overturning of equipment under horizontal pulse-type motion,” Report No. PEER-98/05, University of California, Berkeley, CA.29.Makris, N. and S. Chang, 1998, “Effect of damping mechanisms on the response of seismically isolated structures,” Report No. PEER-98/06, University of California, Berkeley, CA.30.Martelli, A. and M. Forni, 1998, “Seismic isolation of civil buildings in Europe,” Progress in Structural Engineering and Materials, vol. 1, No. 3, pp.286-294.之31.內政部建築研究所(1999)「建築物隔震系統規範」草案條文及解說32. 鍾立來、盧煉元、吳賴雲、葉錦勳、黃炯憲、黃國雲、蕭三郎 (2000) “結構強迫振動系統識別之理論分析與試驗驗證” ,結構工程,第十五卷, ,第二期,71-90頁.33.葉錦勳、盧煉元、鍾立來、黃炯憲 (1996) “鋼結構強迫振動試驗實例分析” , 第三屆結構工程研討會論文集,屏東鵝鸞鼻,9月1 ~ 3日,pp. 671-681.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top