跳到主要內容

臺灣博碩士論文加值系統

(44.210.21.70) 您好!臺灣時間:2022/08/15 08:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李倩美
研究生(外文):Chien-Mei Lee
論文名稱:丙烯羧氧化的安全製程研發:觸媒製備,觸媒表面引燃與均相氣體引燃之研究
論文名稱(外文):Safe Process Development of Propylene Acetoxylation:The Studies of Catalyst Preparation, Catalyst Surface Ignition and Homogenous Gas Phase Ignition
指導教授:陳政任陳政任引用關係
指導教授(外文):Jenq-Renn Chen
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:72
中文關鍵詞:羧氧化醋酸丙烯酯觸媒表面引燃均相氣體引燃
外文關鍵詞:acetoxylationhomogenous gas phase ignitioncatalyst surface ignition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
氧化反應最大潛在的危害在於反應不走正常的部分氧化而改走完全氧化,亦即爆燃,因此了解爆炸界限為氧化製程的先決條件。但氧化反應若為氣相觸媒催化,則觸媒可能提早引發失控性的氧化反應,故氣相觸媒氧化製程必須先考量觸媒反應特性、氧化反應機制與氧氣供應量之間的關聯等。本研究以丙烯羧氧化反應為例,對觸媒製備、正常氧化反應、觸媒表面引燃及均相氣體引燃做有系統的研究。
丙烯、醋酸、氧氣在高溫氣相狀態中可與鈀金屬觸媒氧化生成醋酸丙烯酯。本研究找出一最佳的觸媒製作配方以得高活性、高持久性之觸媒。在連續式固定床在160℃、壓力4barg的反應條件下,當氧氣供應量由8.1%上升達到17.1%時,系統會因觸媒催化引起表面引燃,造成升溫失控;在無觸媒存在時,對均相氣體進行引燃測試,在氧氣量供應量達到22.7%時即達到系統之爆炸上限。因此在丙烯羧氧化製程中,觸媒因本身具有之催化特性,會加速失控性氧化反應之進行,導致意外災害的發生。此研究結果可提供觸媒氧化製程之安全操作及危害評估之參考。
The greatest potential hazard of most oxidation reactions lies in the uncontrolled, undesired total oxidation, namely the deflagration. Thus it is essential to know and avoid entering the explosive limits for all oxidation reactions. However if the oxidation is catalyzted in the gas phase by solid catalysts, the catalysts may promote uncontrolled oxidation well below the explosive limits. Therefore, it is necessary to know the catalyst characteristics and the relation between oxidation mechanism and oxygen concentration.
This study focuses on the acetoxylation of propylene. Catalyst preparation, normal oxidation, catalyst surface ignition and homogenous gas phase ignition are systematically studied. Gas-phase propylene, acetic acid and oxygen at high temperature can be catalysted by Palladium to form allyl acetate. An optimum catalyst recipe is developed such that high activity and durable catalysts can be prepared. In a continuous fixed bed reactor with a temperature of 160℃ and a pressure of 4 barg, increasing feed oxygen concentration from 8.1% to 17.1% will lead to surface ignition on the catalyst and causing temperature runaway. At the absence of catalyst, homogeneous ignition is achieved only at feed oxygen concentration higher then 22.7%. Thus the acetoxylation catalyst will catalyze uncontrolled oxidation and lead to incident well below the explosive limits. The result will be extremely useful in the safe operation and hazard assessment for catalytic oxidation reaction.
中文提要i
英文提要ii
誌 謝iii
目 錄iv
表 目 錄vi
圖 目 錄vii
符 號 說 明x
第一章前言1
第二章文獻回顧2
2.1固定化床反應器2
2.2觸媒製備3
2.3觸媒表面引燃11
2.4均相氣體引燃12
第三章研究方法14
3.1觸媒製備15
3.1.1觸媒製備配方15
3.1.2觸媒載體15
3.1.3實驗裝置與反應操作流程16
3.1.4丙烯氧化生成醋酸丙烯酯之反應生成物分析19
3.1.5鈀-銅金屬之王水消化火焰式原子吸收光譜分析23
3.2觸媒表面引燃實驗26
3.2.1鈀-銅-鈷三金屬觸媒製備26
3.2.2實驗裝置及反應操作流程26
3.2.3反應產物分析及數據整理27
3.3均相氣體引燃實驗28
3.3.1實驗裝置及反應操作流程28
3.3.2適當點火能量測試、點火器製備條件29
第四章結果與討論32
4.1觸媒製備實驗結果32
4.1.1觸媒載體的選擇32
4.1.2觸媒浸漬方法及還原劑使用量33
4.1.3水洗對觸媒活性的影響35
4.1.4酸洗對觸媒活性之影響37
4.1.5添加銣、銫之鹼金屬醋酸鹽對觸媒活性的影響39
4.1.6多金屬配方對觸媒活性之影響40
4.1.7鈀、銅金屬之王水消化火焰式原子吸收光譜法分析結果44
4.2觸媒表面引燃實驗結果45
4.3均相氣體引燃實驗結果54
第五章結論與建議60
參考文獻62
附錄一66
1.田福助,朱進興,汪玉銘,饒建中,1993,反應工程,三版,高立圖書有限公司,台北。2.劉健行,吳俊璋,陳政任,2000,”高壓氧化製程爆然的危害分析”,工業安全衛生研討會論文集,頁37-48。3.Abel, R., I. Nicolau, E. Hopf, R. Kiemel, 2000, “Palladium, gold and boron catalyst and process for the preparation of vinyl acetate”, US Patent 6114571, September.4.Abel, R., K. F. Wörner, 1997, "Surface impregnated catalyst process for the production thereof, and use thereof for the preparation of vinyl acetate”, US Patent 5672734, September.5.Abel, R., K. F. Wörner, 1998, “Carrier catalyst, process for the production thereof for the preparation of vinyl acetate”, US Patent 5777156, July.6.Augustine, S. M., J. P. Blitz, 1993, “The use of DRIFTS-MS and Kinetic Studies to determine the role of acetic acid in the palladium-catalyzed vapor-phase synthesis of vinly acetate”, Jounal of Catalysis, vol. 142, P312~324.7.Boyadzhian, V. K., S. S. Khachatrian, G. G. Stepanian, V. K. Eritsian, E. S. Agavelian, O. M. Nefedov, I. E. Dolgy, M. F. Sisin, A. Y. Kolbasin, I. K. Anikeev, 1977, “Method of producing allyl acetate”, US Patent 4056563, November.8.Drake, C. A., 1985, “Catalyst for the production of allyl acetate”, US Patent 4550097, October.9.Drake, C. A., 1986, “Process for the production of allyl acetate”, US Patent 4571431, February.10.Drake, C. A., 1986, “Catalyst for the production of allyl acetate”, US Patent 4608362, August.11.Drake, C. A., 1987, “Process for the production of allyl acetate”, US Patent 4647690, March.12.Drake, C. A., S. E. Reiter, 1986, “Catalyst for the production of allyl acetate”, US Patent 4587229, May.13.Drake, C. A., S. E. Reiter, 1987, “Process for the production of allyl acetate”, US Patent 4634794, Jane.14.Fernholz, H., H. J. Schmidt, F. Wunder, 1972, “Process for the manufacture of allyl esters of carboxylic acids”, US Patent 3670014, June.15.Fernholz, H., H. J. Schmidt, F. Wunder, 1975, “Process for the manufacture of allyl acetate”, US Patent 3903139, September.16.Kisaki, H., Y. Tsutsumi, K. Takeshige, 1975, “Process for producing allyl acetate”, US Patent 3917676, November.17.Lyons, J. E., G. Suld, 1986, “Catalytic oxidation of propylene to allyl acetate”, US Patent 4602104, July.18.Lyons, J. E., G. Suld, 1988, “Catalytic oxidation of propylene to allyl acetate”, US Patent 4732883, March.19.Nagato, N., K. Maki, T. Uematsu, R. Ishioka, 1986, “Process for the production of allyl acetate”, US Patent 4567292, January.20.Nakamura, S., T. Yasui, 1970, “The mechanism of the palladium-catalyzed synthesis of vinyl acetate from ethylene in a heterogeneous gas reaction”, Journal of Catalysis, vol. 17, P366~374.21.Nicolau, I., 2000, “Vinyl acetate production using a catalyst comprising palladium, gold, copper and any of certain fourth metals”, US Patent 6072078, December.22.Nicolau, I., L. R. Johnson, 1998, “Honeycomb catalyst for vinyl acetate synthesis”, US Patent 5705679, April.23.Nicolau, I., L. R. Johnson, 1998, “Honeycomb catalyst for vinyl acetate synthesis”, US Patent 5854171, September.24.Reilly, C. R., J. J. Lerou, 1998, ”Supported liquid phase catalysis in selective oxideation”, Catalysis Today, vol. 41, P433~441.25.Roscher, G., Kelkheim, Taunus, H. Schmitz, 1977, “Process for the preparation of allyl acetate”, US Patent 4010198, March.26.Sano, K., K. Maki, H. Kamei, 1991, ”Process for the preparation of allyl acetate, US Patent 5011980, April.27.Satterfield, C. N., 1979, Heterogeneous Catalysis in Industrial Practice, McGraw-Hill, New York.28.Stull, D. R., E. F. Westrum, 1980, The Chemical Thermodynamics of organic compounds, John Wiley & Sons, New York.29.Swodenk, W., O. Globusch, G. Scharfe, 1975, “Process for the production of allyl acetate”, US Patent 3925452, December.30.Takahashi, A., Y. Urano, K. Tokuhashi, H. Nagai, M. Kaise, S. Kondo, 1998, “ Fusing ignition of various metal wires for explosion limits measurement of methane/air mixture”, Journal of Loss Prevention in the Process Industries, vol.11, P353~360.31.Veser, G., L. D. Schmidt, 1996, “Ignition and extinction in the catalytic oxidation of Hydrocarbons over Platinum”, AIChE Jounal, vol.42, P1077~1087, April.32.Wirtz, P., K. F. Worner, F. Wunder, K. Eichler, G. Roscher, I. Nicolau, 1994, ”Carrier catalyst, process for its preparation, and its use for the preparation of vinyl acetate”, US Patent 5292931,March.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top