跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 13:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許盈志
研究生(外文):Yin-Chih Hsh
論文名稱:使用高效益固定生物模反應器處理系統(FFR)處理地下水之可行性評估試驗研究
論文名稱(外文):A Study for The Groundwater of Oil Refinery Treated by Fixed-Film Bioreactor
指導教授:周志儒周志儒引用關係
指導教授(外文):Chih-Ju George Jou
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:98
中文關鍵詞:地下水固定生物膜BTEX水力停留時間
外文關鍵詞:FFRfixed film bioreactorsmicroorganisms
相關次數:
  • 被引用被引用:4
  • 點閱點閱:305
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
20世紀中期,懸浮生長式生物處理系統廣受大眾之使用,但在產業結構愈趨複雜、法令卻日益嚴格的現今,使原有處理法似乎不但不再能穩定發揮其處理效用且亦無法符合法規標準。於是,我們引進了一套新的生物處理系統(Fixed Film Bioreactors),以增加其處理效率。本系統的優點為:1、有機負荷能力高。2、污泥產出少。3、處理效率穩定且對進流水質變化具高忍受力。
本研究於實驗室內設計一長約40cm、直徑約8cm及總容積約1000ml之BT-FFR玻璃管柱模型,反應槽是以cocurrent upflow的模式操作,空氣和廢水的流動方式均為由反應槽底部往頂端流,反應槽內依適當比例填充網狀聚亞胺酯發泡體(polyurethane foam)及硬質網狀塑膠環(plastic pall rings)作為生物載體。反應槽中生物擔體經微生物之馴養及增殖完成後,進行各項實驗測試。
研究結果發現,反應槽中附著於生物擔體上微生物之優勢菌為Acinetobacter junii、Ultramicrobacterium sp、Agromyces mediolanus等菌。在水力停留時間4小時、溫度在25-32℃及水中溶氧控制在2-3ppm下進行石化廠地下水處理之實驗操作,其操作之進/出流水COD值分別為1200-1900/30-50mg/l,COD去除率約為95-98%。進/出流水之苯濃度分別為488.1/0.008ppm,去除效率約為99.9%。進/出流水之甲苯濃度為113.1/NDppm,去除率近乎100﹪,而儀器操作偵測極限為0. 27ppb。進/出流水之TOC值為2248/9ppm,去除效率約為99.6%。水力停留時間2小時情況下,反應槽亦具相當程度之處理能力,出流水亦符合法規標準。結果顯示出此系統針對受污染之地下水體之處理成果卓著。
In the mid-1900’s, suspended growth systems became popular, in which microorganisms were constantly dispersed throughout the wastewater by mechanical and/or air agitation. Recently, fixed film bioreactors(FFR), in the form, for example, of rotating disks or packed beds, are re-emerging as configurations of great efficiency and stability, especially when a very high degree of degradation is desired. Biological treatment of industrial oil refinery wastewater is a well-established method for remediation of these wastes. We have designed a new bioreactor system to increase the efficiency of biological treatment system by(1)allowing greater organic loads,(2)minimizing production of sludge waste by-product, and(3)increasing process stability and resistance to shock loading.
The objective of the tests was to determine if impacted groundwater could be effectively cleaned up using a biological technique, i.e., bioremediated. The technique used is commercially available. It is called the Fixed Film Reactor (FFR).
The results of the study showed that approximately 99.9% of the main impacting groundwater components (e.g., benzene) were completely eliminated from the groundwater. Dominant microbes in the reactor are Acinetobacter junii、Ultramicrobacterium sp and Agromyces mediolanus. We conclude from these results that this laboratory study was highly successful in meeting its objectives. We therefore recommend that a full-scale pilot study be initiated on site. The purpose of the pilot study is to collect engineering parameters needed to design a full-scale reactor able to efficiently treat impacted groundwater.
目 錄
中文摘要…………………………………………………………………I
英文摘要………………………………………………………………...II
誌謝……………………………………………………………………..IV
目錄………………………………………………………………………V
表目錄……………………………………………………………… ...VIII
圖目錄…………………………………………………………………..IX
壹、緒論………………………………………………………………1
1.1 研究緣起…………………………………………………………………….1
1.2 研究目的…………………………………………………………………….3
貳、文獻回顧………………………………………………………….4
2.1 廢水微生物…………………………………………………………………..4
2.1.1 微生物的角色…………………………………………………………….4
2.1.2 細菌生化反應…………………………………………………………….4
2.1.3 多種基質之效應(Effect of Multisubstrates)………………………….6
2.2 好氧生物處理之原理………………………………………………………..7
2.3 苯環類化合物之生物分解…………………………………………………..9
2.3.1 BTEX之生物分解特性…………………………………………………..10
2.3.2 BTEX之生化代謝途徑…………………………………………………...10
2.3.3 BTEX間之基質利用關係………………………………………………...11
2.4 生物膜法之原理……………………………………………………………..19
2.5 物理化學處理方式…………………………………………………………..23
2.6 生物處理法…………………………………………………………………..24
2.6.1 活性污泥法……………………………………………………………….24
2.6.2 生物濾床法……………………………………………………………...25
2.6.3 旋轉生物圓盤法………………………………………………………...27
2.6.4 流體化床………………………………………………………………...28
2.6.5 曝氣塘、氧化塘法………………………………………………………29
2.7 固定式生物膜反應器介紹…………………………………………………..30
2.7.1 固定式生物膜反應器特性………………………………………………...30
2.7.2 影響固定式生物膜反應器處理效果之因素…………………………….32
2.8 固定式生物膜法技術之願景………………………………………………..35
參、研究材料與方法…………………………………………………36
3.1 研究架構…………………………………………………………………..36
3.2 菌種來源及鑑定方法………………………………………………………37
3.2.1 菌種來源……………………………………………………………...38
3.2.2 鑑定方法……………………………………………………………...38
3.3 比攝氧速率測定……………………………………………………………43
3.3.1 實驗器材……………………………………………………………...44
3.3.2 實驗步驟……………………………………………………………...44
3.4 批次生物分解性試驗………………………………………………………45
3.4.1 實驗設備……………………………………………………………...45
3.4.2 實驗方法……………………………………………………………...45
3.5 Bench.Top 固定式生物膜反應器啟動…………………………………….46
3.5.1 實驗設備……………………………………………………………...46
3.5.2 實驗方法……………………………………………………………...52
3.6 水樣中有機化合物(VOC)組成分析……………………………………52
3.7 檢測項目及方法……………………………………………………………63
肆、結果與討論………………………………………………………64
4.1 菌種鑑定結果報告………………………………………………………...64
4.2 比攝氧速率測定結果……………………………………………………...70
4.3 批次生物分解性試驗結果評估…………………………………………...73
4.4 原水水質分析結果………………………………………………………..76
4.4.1 物理特性(溫度、透視度、懸浮固體)…………………………….76
4.4.2 化學特性(pH、DO、TOC、COD、BTEX、導電度、油脂、鈣離子)
……………………………………………………………………….....77
4.5 反應器啟動與操作結果…………………………………………………..80
4.5.1 水力停留時間4小時………………………………………………….83
4.5.2 水力停留時間2小時………………………………………………….83
4.6 去除率……………………………………………………………………..86
4.7 酵素動力學Km及Vmax………………………………………………….87
伍、結論與建議……………………………………………………....91
5.1 結論………………………………………………………………………..91
5.2 建議………………………………………………………………………..93
參考文獻…………………………………………………………….…………….95





表 目 錄
表2-1 各種生物處理法之效率…………………………………………………..30
表3-1 PCR反應中各反應物的用量【體積(ul)】……………………………41
表3-2 檢測井取樣及水質分析方法……………………………………………..63
表4-1 各濃度下比攝氧速率測定………………………………………………..71
表4-2 COD 搖瓶降解試驗………………………………………………………74
表4-3各時段生物分解後水樣之苯及甲苯濃度(原水之苯濃度為316.25ppm;甲苯濃度為87.7ppm)…………………………………………………………75
表4-4 原水水質…………………………………………………………………..79
表4-5 水力停留時間4小時之出流水水質……………………………………..84
表4-6 水力停留時間2小時之出流水水質……………………………………..85
表4-7 去除效率…………………………………………………………………..86










圖 目 錄
圖2-1 細菌新陳代謝簡圖…………………………………………..……………..5
圖2-2 微生物好氧性代謝及厭氧性代謝比較……………………………………8
圖2-3 好氧處理之物質平衡………………………………………………………9
圖2-4 苯之好氧代謝途徑………………………………………………………..13
圖2-5 Catechol 之Ortho-cleavage及meta-cleavage代謝途徑………………...14
圖2-6 甲苯於不同菌種之代謝途徑,其中A.為P.putida mt-2菌、B.為P.putida PpF1菌、C.為P.mendocina菌…………………………………………….15
圖2-7 Pseudomonas putida菌利用甲苯及乙苯生長時之好氧代謝途徑………16
圖2-8 Nocardia species好氧降解鄰-二甲苯之代謝途徑……………………..17
圖2-9 對-二甲苯及間-二甲苯之好氧代謝途徑……………………………...18
圖2-10 微生物膠泥層……………………………………………………………..20
圖2-11 傳統活性污泥法…………………………………………………………..25
圖2-12 曝氣式生物濾床…………………………………………………………...26
圖2-13 向下式生物濾床…………………………………………………………...26
圖2-14 二列四階段RBC系統…………………………………………………….27
圖3-1 研究流程…………………………………………………………………..37
圖3-2 菌種鑑定流程……………………………………………………………..39
圖3-3 DNA定序用的三條引子之結合位置,及其方向性……………………43
圖3-4 生物膜反應器本體………………………………………………………..47
圖3-5 系統流程示意圖…………………………………………………………..48
圖3-6 網狀聚亞胺酯發泡體(Polyurethane foam)(正視圖)…………………49
圖3-7 網狀聚亞胺酯發泡體(Polyurethane foam)(側視圖)…………………49
圖3-8 硬質網狀塑膠圓柱體拉西環(plastic pall rings)(正、側視圖)…….…50
圖3-9 網狀發泡體及塑膠拉西環兩種擔體之結合方式………………………...50
圖3-10 生物擔體於反應槽中之填充方式……………………………………….51
圖3-11 60種揮發性有機化合物圖譜……………………………………………62
圖4-1 30%~60%之變形梯度膠…………………………………………………65
圖4-2 40%~60%之變形梯度膠…………………………………………………66
圖4-3 菌種培養在TSA之觀察結果……………………………………………67
圖4-4 菌種在1000倍油鏡下之觀察結果……………………………………...68
圖4-5 比攝氧速率……………………………………………………………….72
圖4-6 COD降解試驗……………………………………………………………74
圖4-7 苯降解圖…………………………………………………………………..75
圖4-8 甲苯降解圖………………………………………………………………..76
圖4-9 發泡體(側)……………………………………………………………...80
圖4-10 發泡體(正-1)……………………………………………………………80
圖4-11 發泡體(正-2)……………………………………………………………80
圖4-12 拉西環(1)……………………………………………………………….81
圖4-13 拉西環(2)……………………………………………………………….81
圖4-14 複合後生物擔體…………………………………………………………..81
圖4-15 培菌後反應槽……………………………………………………………..82
圖4-16 反應槽V-S關係圖………………………………………………………..88
圖4-17 K2圖解圖………………………………………………………………….90
Alvarez, P.J.J, and T.M. Vogel,1991,”Substrate interactions of benzene, toluene, and paro-xylene during microbial degradation by pure cultures and mixted culture aquifer slurries.” in Appl. Environ. Microbiol.57(10):P2981-2985.Arvin, E., B.K. Jensen, and A.T. Gundersen, 1989,”Substrate inter actions during aerobic biodegradation of benzene.” in Appl. Environ. Microbiol,55(12):P3221-3225.Barbaro,J,R., J.F. Barker, L.A. Lemon, and C.I.Mayfield.”Biotransformation of BTEX under anaerobic, denitrifying conditions:field and laboratory observation.” J.Contamiant Hydrol.11:P245-272.Baggi, G.,P.B.Barbieri, E.Galli, and S.Tollari., 1987,”Isolation of a Pseudomonas stutzeri strain that degrades o-xylene. ” in Appl. Environ. Microbiol,53(9):P2129-2132..Baumann, P., 1968,”Isolation of Acinetobacter from soil and water . ” J . Bacteriol,96:39-42.Baumann, P.,M.Doudoroff and R.Y. Stanier,1968b,”A study of the Moraxella group II. Oxidative negative species (Genus Acinetobacter). J.Bacteriol.” 95:1520-1541.Bear, J., 1972, ”Dynamics of Fluids in Porous Media”, American Elsevier publishing co. Inc., 764pp., N.Y.Burback, B.L., and J.J.Perry.,1993,”Biodegration and biotransfor-mation of groundwater pollutant mixture by Mycobacterium vaccae.” in Appl. Environ. Microbiol,59(4):P1025-1029.Cassidy M. B., H. Lee,and J.T. Trevors., 1996, “Environmenttal applications of immobilized microbial cells”:a review,J.of Industrial Microbiology 16:79-102.Characklis,W.G., 1981,”Fouling Biofilm Development:A process Analysis”,Vol.XXⅢ,p.1923-1960.Chiang, C.Y., J.P. Salanitro, E.Y.. Chai, J.D. Colthart, and C.L.Klein., 1989,”Aerobic biodegradation of benzene, toluene, and xylenes in a sandy aquifer-data analysis and computer modeling.” in Ground Water 27(6):P823-834.Charbeneau, R.T., Beclient, P.B., and Loehv, R.C., “Water Quality Management Library — Volume 8/Groundwater Remediation.”, Technomic Publishing Company, Inc. Lancaster, Pennsylvania.Donoghue, N.A. and Trudgill. P.W.,1975,”The metabolism of Cyclohexanol by Acinetobacter NCIB 9871”, Eur.J.Biochem ,60:1-7.Eckenfelder, W.W.,Argaman,Y.,and Miller, E., 1989, “Process Selection Criteria for the Biological Treatment of Industrial Wastewaters”, in Environmental Progress,Vol.8,No.1,p.40-45.Evans,P.J., D.T.Mang, and L.Y.Young.,1991,”Degration of toluene and m-xylene and transformation of o-xylene by denitrifying enrichment cultures.” in Appl. Environ. Microbiol,57(2):P450-454.Freeze, R. A. and J. M. Gossett, 1979, Groundwater, Prentice-Hall, Inc, N.J.Friedman B.A.et.Al., 1969,”Structure of Excellular Polymers and Their Relationship to Bacterial Flocculation”, in Jour.Bacterial,Vol.98,p1328-1334.Finette, B.A., V. Subramanian, and Gibson,D.T.,1984,”Isolation and characterization of Pseudomonas putida PpFL mutants defective in the toluene dioxygenase enzyme system. J. Bacteriol.”160(3):P1003-1009. Fan,S. ,and K.M. Scow., 1993,”Biodegradation of trichloroethylene and toluene by indigenous microbial populations in soil.” in Appl. Environ Microbiol.59(6):P1911-1918.Gibson, D.T. and V. Subramanian.,1984, “Microbial degradation of aromatic hydrocarbons.” in D.T. Gibson(ed.), Microbial degradation of organic compounds. Marcel Dekker, P.181-252, Inc. N.Y.Gaudy, A. F. & Turer B. G., 1964,” Effect of Air Flow Rate on Response of Activated Sludge to Quantitative Shock Loading”, in JWPCF,Vol.36,No.5,p.767-781. Hutchins,S.R.,1991,”Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using oxygen、nitrate or nitrous oxide as the terminalelectron acceptor”. Appl. Environ. Microbiol.57(8):P2403-2407.Kenneth W. and McCarty, P.L., 1976,” A Model of Substrate Utilization by Bacterial Films”,in JWPCF.,Vol.48,No.1. Krieg, N.R. and Holt, J.G., 1984, Bergey’s Manual of Systematic Bacteriology. Volume I,藝軒出版社, P303-307.Major, D.M., C.I. Mayfield, and J.F. Baker., 1988,”Biiotransformation of benzene by denitrification in aquifer sand.” in Ground Water26(1):P8-14.Morgan. P.,1993,”Biodegradation of benzene, toluene, ethylbenzene and xylenes.” in Environmental Pollution.82:P181-190.Patterson, B.M., F. Paribac, C. Barder, G.B. Davis, and R,Gibbs.,1991,”Biodegradation and retardation of PCE and BTEX compounds in aquifer.” Material from Western Austrialia using large-scale columns. J.Contaminant Hydrol,14:P261-278.Ridgway, H.F., J.Safarik, D. Phipps, P.Carl, and D.Clark.,1990,”Identification and catabolic activity of well-derived gasoline-degrading bacteria form acontaminated aquifer.” in Appl. Environ.Microbiol.56(11):P3565-3575.Rittmann, B. E. and McCarty, P. L., 1981,“Substrate Flux into Biofilm of any Thickness”,in JEED.ASCE,p.831-849.Steeart, J.E., Kallio, R.E., Stevenson, D.P., Jones, A.C. and Schissler, D.O.,1959,”Bacterial Hydrocarbon Oxidation I. Oxidation of n-hexadecane by a gram negative coccus. ”J. Bacteriol, 78:441-448.Shields, m.s., S.O. Montgomery, P.J. Chapman, S.M. Cuskey, and P.H. Pritchard.,1989,”Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4.i” in Appl. Environ.Microbiol.55(6):P1624-1629.Sneath,H.A.,et al.,1986, Bergey’s Manual of Systematic Bacteriology. Volume II,藝軒出版社,p1329-1331.Suflita, J.M.,1989,”Microiological principles influencing the biorestoration of aquifers.” Transport and fdte of contaminants in the subsurface, U,S,EPA, EPA/625/4-89/019. Cincinnati,:P85-100.Warskow,A.L. and Juni, E., 1972,”Natritional Reguirement of Acinetobacter Strain Isolated From Soil, Water, and Sewage. ”,J. Bacteriol,112:1014-1016.Zeyer J.,E.P. Kuhn, and R.P. Schwarzenbach.,1986, ”Rapid microbial mineralization of toluene and 1.3-dimethylbenzene in the absence of molecular oxygen.” in Appl. Environ. Microbiol,52(4):P944 -947.李宗憲, 1998,缺氧/好氧生物濾床法去除污水中氮磷之研究,淡江大學水資源及環境工程研究所,碩士論文。林秋裕,1991,衛工微生物學,國彰出版社, 台中。高肇藩,1987,給水工程(衛生工程.自來水篇),國立成功大學環境工程學系,台南。莊順興,1988,”懸浮生物膜接觸曝氣法處理含PVA廢水之研究”,第十三屆廢水處理技術研討會論文集,P1-14。經濟部,1984,廢水生物處理技術,經濟部工業局印行,第二章,P7-8。廖志鴻,1993 ,受苯環類化合物污染的地下水生物復育可行性之研究,國立中興大學環境工程研究所,碩士論文。曾義雄,1993,好氧異營菌之異化作用,藝軒出版社,台北。 鄭宗雄,1992 ,受芳香族碳氫化合物污染之地下水現地生物復育研究,國立台灣大學環境工程研究所,碩士論文。盧至人, “多重碳源對水中低濃度有機化合物分解的影響”, NSC80-0421-E005-13-Z。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊