跳到主要內容

臺灣博碩士論文加值系統

(3.235.140.84) 您好!臺灣時間:2022/08/13 06:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉上豪
研究生(外文):Shang-Hao Yeh
論文名稱:大氣半揮發性有機物氣-固(PM1/PM10)相分佈係數模擬及測定比較研究
論文名稱(外文):Comparison of modeled and measured partitioning of ambient semi-volatile organic compounds onto different sizes of particles(PM1/PM10)
指導教授:林銳敏林銳敏引用關係
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:90
中文關鍵詞:半揮發性有機物氣固相係數佈正烷類半揮發性有機物氣固相係數佈正烷類
外文關鍵詞:SVOCsKp valuen-alkanes
相關次數:
  • 被引用被引用:2
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大氣半揮發性有機物氣-固(PM1/PM10)相
分佈係數模擬及測定比較研究
摘 要
大氣污染物中,半揮發性有機物(semi-volatile organic compounds, SVOCs)佔有一定的貢獻地位,不僅對自然環境造成衝擊,對人體健康也會有相當程度的危害,例如PAHs、n-alkanes等,其蒸氣壓介於10-2~10-12mmHg之間,不僅以蒸氣相存在於大氣環境中,其固相亦會分佈於不同粒徑的懸浮微粒上,本研究係針對PM1及PM10兩種不同粒徑上的半揮發性有機物n-alkanes加以探討,以了解正烷類在蒸氣相及PM1/PM10之分佈情形。而基於污染控制及暴露危害之考量,掌握半揮發性有機物於大氣中的氣固相分布,遂相形變成很重要的關鍵。
本研究以Yamasaki (1982)及Pankow (1987)所推演出的大氣半揮發性有機化合物(SOCs)之分佈係數計算模式(Kp=F/TSPA )為基礎,針對目標物種C19、C23、C29、C31等正烷類,重新演繹及計算Kp模式,並以現場採樣分析資料與演繹模擬的結果進行分析比較,探討大氣中實際的分佈情形與理論推演的趨勢是否相符,且進一步探討目標物種於氣-固相間分佈之情形及差異性,並瞭解大氣環境中特定化合物的分佈情形,及造成差異的影響因子,以提供空氣污染防制管理參考。
本研究於民國90年12月至91年4月間,以高雄小港國中及高科大作為現場採樣點,利用大氣現場採樣及化學分析,探討分析懸浮微粒(PM1及PM10)及有機組成正烷類氣固相分佈之趨勢,以進一步的了解大氣中不同碳數之正烷類其氣固相分佈的狀態。
本研究現場採樣分析結果C19之PM1 Kp平均值為0.0077,PM10為0.0044;C23之PM1 Kp平均值為0.0527,PM10為0.0317;C29之PM1 Kp平均值為0.5327,PM10為0.4397;C31之PM1 Kp平均值為0.2962,PM10為0.2336。由以上實驗結果,其不同碳數之正烷類其KP,PM1皆比 KP,PM10大,顯示出細微粒的KP值比粗微粒的KP值大,表示正烷類於在PM1中的氣固相分佈狀態,其固態所佔的比例較在PM10中為高,與理論推斷的結果相同。
由本研究之KP,PM1/ KP,PM10的分佈趨勢,可知低碳數的正烷類分佈在PM1上的固相比例比分佈在PM10上來的高,因為低碳數的正烷類主要來源貢獻是來自石化燃燒的排放,且主要分佈在細微粒,高碳數之正烷類主要是由生物性排放源所貢獻,主要分佈於粗微粒上,所以低碳數的KP,PM1/KP,PM10之比值比高碳數的比值來的高,這也顯示出採樣點附近的污染排放皆為人為的排放。
Comparison of modeled and measured partitioning of ambient semi-volatile organic compounds onto different sizes
of particles(PM1/PM10)

Abstract

Find particles is a known key component of the resource of the air pollution in Taiwan area. Most of the particles are due to the existing particle phase, PM1/PM10, and the gas phase of the semi-volatile organic compounds, SVOCs, such as PAHs、n-alkanes. Therefore, understanding of the Kp value of PM1 and PM10 of n-alkanes becomes a key factor for the control of the air pollution to the improvement of our
living environment in a big city like Kaoshiung in Taiwan.
This research is one of such efforts that can provide data for the reference that can be used for air pollution control in Kaoshiung city. This research begins with the review of the papers that intended to give a good analytical model for the calculation of the Kp values of SVOCs. A pioneer model proposed by Yamasaki(1982) and Pankow(1987) can be given as Kp=F/PMA ,where Kp is gas/particle partitioning coefficient(m3 μg-1), F is the concentration of n-alkane in the particle phase (ng m-3), PM is the concentration of particle (μg m-3), A is the concentration of n-alkane in the
gas phase (ng m-3).
Since most of the SVOCs, i.e. n-alkanes and PAHs, existing in the air in the form of particle phase(PM1/PM10) and gas phase with the vapor pressure in the range of 10-2 to 10-12 mmHg, the carbonic range can be givens as in the range from C15 to C36. Therefore, we decided to sampled the n-alkanes compound C19, C23, C29 and C31 to calculate their corresponding PM1 and PM10 value at two locations in Kaoshiung city. Detail model to calculate Kp value as well as the setup and the data collection methods are discussed in Chapters 2 and 3, with CH. 3 was devoted to the discussion of the
study methods.
Chapter 4 is used to analyze the data, collected in the time interval from Dec.
2001 to Api. 2002 at Hsiao-kang junior high school and NKFUST.
Our analytical model found that a ratio factor of PM1/PM10 to be 1.39 for all carbonic compounds C19, C23, C29 and C31. Our measured data showed that the PM1/PM10 ratio are :1.73 for C19, 1.55 for C23, 1.32 for C29, and 1.24 for C31. All of the calculated values confirm the bigger PM1 than PM10. This matches the data published in all the referenced papers. This good agreement concludes that low C, C19, has even more PM1 ratio than PM10 that the air pollution might mostly contributed by
the human generated pollution.
Keyword: SVOCs、Kp value、n-alkanes
目  錄
中文摘要i
英文摘要iii
誌謝v
目錄vi
表目錄x
圖目錄xi
第一章 前言
1.1 研究緣起1
1.2 研究目的2
1.3 研究流程3
第二章 文獻回顧
2.1 氣-固相分佈係數(gas-particle partition coefficient, Kp).5
2.1.1 氣-固相分佈係數定義5
2.1.2 氣-固相分佈係數的理論...6
2.1.3 分子量及溫度對氣-固相分佈係數之影響……………….7
2.2 正烷類的來源與特性.12
2.3 氣固相分佈相關研究……………………..…………………………13
第三章 研究方法
3.1 模式理論及演繹16
3.1.1 氣-固相分佈係數理論16
3.1.2 氣-固相分佈係數演繹17
3.1.3 Ρ0L與Kp(F/TSPA )關係18
3.1.4 以正烷類(Calk)為例探討Kp值之變化19
3.2 大氣懸浮微粒及蒸氣相之現場採樣20
3.2.1 現場採樣方法20
3.2.2 採樣設備及採樣介質20
3.2.3 採樣介質前處理23
3.2.4 流量校正24
3.2.5 現場採樣地點與時間24
3.2.6 現場採樣步驟24
3.3 樣品處理28
3.3.1 索氏萃取28
3.3.2 樣品濃縮及處理28
3.3.3 淨化與再濃縮28
3.3.4 分析樣本之製備28
3.4 正烷類成分分析方法28
3.4.1 分析儀器與條件30
3.4.2 正烷類儲備溶液的配製29
3.4.3 內標溶液的配製29
3.4.4 檢量線之製作30
3.4.5 偵測極限33
3.4.6 萃取回收率35
3.4.7 空白實驗38
3.4.8 大氣中正烷類濃度的推算40
第四章 結果與討論
4.1 採樣資料代表性分析42
4.2 正烷類微粒相(PM1/PM10)及蒸氣相濃度特性47
4.2.1 PM中正烷類樣本分析結果47
4.2.2 蒸氣相正烷類樣本分析結果48
4.2.3 正烷類濃度與微粒粒徑相關性分析48
4.2.4 正烷類氣固相濃度相關性分析54
4.3 氣-固相分佈係數57
4.3.1 理論值之計算57
4.3.2 PM1及PM10之模擬Kp值63
4.3.3 溫度對氣-固相分佈係數Kp之影響63
4.3.4 分子量對氣-固相分佈係數Kp之影響63
4.3.5 氣-固相分佈係數Kp實驗值之計算結果67
4.3.6 Kp理論值與實驗值之分析68
4.3.7 KP,PM1及 KP,PM10之分析69
4.3.8 飽和蒸氣壓(PLO)對KP,PM1及 KP,PM10之影響分析78



第五章 結論與建議
5.1 結論82
5.2 建議84
參考文獻86


附錄A 正烷類分析檢量線圖
附錄B 正烷類之氣固相濃度分佈圖
附錄C 正烷類PM1/PM10分佈趨勢圖
附錄D KP與PL0之回歸圖
附錄E GC/FID之分析圖譜及資料

表 目 錄
表2.1-1 各物種於20℃及25℃時之log KP 與log PL0值10
表3.2-1USA測定器小孔流量計校正表25
表3.2-2 現場採樣環境說明26
表3.4-1 正烷類標準溶液在GC/FID所測得波峰面積與峰面積比32
表3.4-2方法偵測極限37
表3.4-3 UAS使用之石英濾紙及PUF和XAD-16添加標準品之萃取回收率40
表3.4-4 空白試驗結果41
表4.1-1 現場採樣基本資料及空品測站監測濃度資料表43
表4.1-2 現場採樣結果與空品監測站資料之比值44
表4.2-1 PM1正烷類濃度值49
表4.2-2 PM10正烷類濃度值50
表4.2-3 蒸氣相正烷類濃度值50
表4.2-4 PM1中正烷類在PM10中的重量含率(﹪)53
表4.3-1 溫度與飽和蒸氣壓之關係57
表4.3-2 半經驗式中各項參數58
表4.3-3 C19於不同溫度下在PM1及PM10之 Koa、Kp及logKp值59
表4.3-4 C23於不同溫度下在PM1及PM10之 Koa、Kp及logKp值60
表4.3-5 C29於不同溫度下在PM1及PM10之 Koa、Kp及logKp值61
表4.3-6 C31於不同溫度下在PM1及PM10之 Koa、Kp及logKp值62
表4.3-7 PM1 之KP實驗值71
表4.3-8 PM10 之KP實驗值71
表4.3-9 KP,PM1與 KP,PM10 之理論值和實驗值之比值76
表4.3-10 KP,PM1及 KP,PM10 間的理論值和實驗值之比例(KP,PM1/ KP,PM10)76
表4.3-11KP,PM1與logΡL0之回歸參數值…………………………………………...80
表4.3-12KP,PM10與logΡL0之回歸參數值…………………………………………..80

圖 目 錄
圖1.3-1 本研究執行流程圖4
圖2.1-1 log (F/TSP)/A 與 log PL0之關係圖8
圖2.1-2 蒸氣壓對氣-固相分布係數之回歸圖9
圖2.1-3 不同物種之log KP 與log PL0關係圖10
圖2.1-4 log KP 與 1/T 之回歸圖11
圖2.3-1 PCDD/Fs 氣固相濃度相關圖13
圖2.3-2 PCDD/Fs 微粒重量分率對蒸氣壓之回歸圖14
圖3.2-1 採樣分析流程圖21
圖3.2-2 MSP UAS-310廣用性大氣測定器外觀圖22
圖3.2-3 UAS測定器測定氣流示意圖26
圖3.2-4 小港現場採樣位址27
圖3.2-5 高科大現場採樣位址27
圖3.4-1 正烷類標準品GC圖譜範例31
圖3.4-2 方法偵測極限測定流程36
圖3.4-3 萃取回收率試驗之流程圖39
圖4.1-1 現場測定點與空品測站PM10濃度相關44
圖4.1-2 PM1及PM10濃度分布圖46
圖4.1-3 現場採樣PM1及PM10濃度相關圖46
圖4.1-4 PM1及PM1-10佔PM10百分比圖47
圖4.2-1 C19在PM1及PM1-10中的濃度分佈51
圖4.2-2 C23在PM1及PM1-10中的濃度分佈51
圖4.2-3 C29在PM1及PM1-10中的濃度分佈52
圖4.2-4 C31在PM1及PM1-10中的濃度分佈52
圖4.2-5 PM1中正烷類在PM10中的比例趨勢圖53
圖4.2-6 PM1中正烷類(C19~C33)在PM10中的比例趨勢圖54
圖4.2-7 C19在PM10及蒸氣相中的濃度分佈55
圖4.2-8 C23在PM10及蒸氣相中的濃度分佈55
圖4.2-9 C29在PM10及蒸氣相中的濃度分佈56
圖4.2-10 C31在PM10及蒸氣相中的濃度分佈56
圖4.3-1 C19 PM1及PM10 之log KP對溫度(℃)之關係圖64
圖4.3-2 C23 PM1及PM10 之log KP對溫度(℃)之關係圖65
圖4.3-3 C29 PM1及PM10 之log KP對溫度(℃)之關係圖65
圖4.3-4 C31 PM1及PM10 之log KP對溫度(℃)之關係圖66
圖4.3-5 正烷類 PM1 之log KP對溫度(℃)之關係圖66
圖4.3-6 正烷類PM10 之log KP對溫度(℃)之關係圖67
圖4.3-7 C19 之KP,PM1理論值與實驗值分佈圖72
圖4.3-8 C23之KP,PM1理論值與實驗值分佈圖72
圖4.3-9 C29 之KP,PM1理論值與實驗值分佈圖73
圖4.3-10 C31之KP,PM1理論值與實驗值分佈圖73
圖4.3-11 C19之KP,PM10理論值與實驗值分佈圖74
圖4.3-12 C23之KP,PM10理論值與實驗值分佈圖74
圖4.3-13 C29之KP,PM10理論值與實驗值分佈圖75
圖4.3-14 C31之KP,PM10理論值與實驗值分佈圖75
圖4.3-15 PM1理論值/實驗值之趨勢圖77
圖4.3-16 PM10理論值/實驗值之趨勢圖77
圖4.3-17 PM1與PM10之KP比值趨勢圖78
圖4.3-18 不同粒徑log KP與log PL0之回歸圖81
參考文獻Bray, E. E. and Evans, E. D. (1961) Geochim. Acta, 22, 2. Bidleman. T. F., In Trace Analysis;Lawrence, J. F., Ed.; Academic:New York (1985), 51-100.Bidleman. T. F., Billings, W. M., Foreman, W. T. (1986) Vapor-particle partitioning of semivolatile organic compounds:Estimates from field collections. Environ. Sci. Technol., 20, 1038-1043.Bidleman. T. F. (1988) Atmosphere Processes. Environ. Sci. Technol., 22, 361-367.Cautreels, W. and Cauwenberghe, K.V. (1976) Determination of organic compounds in airborne particulate matter by gas chromatography/mass spectrometry. Atmos. Environ.,.10, 447-457.Chiou, C. T., Peters, L. J., Freed, V. H. (1979) A physical concept of soil-water equilibria for nonionic compounds. Science, 206, 831-832.Chiou, C. T., Schmedding, D. W., Manes, M. (1982) Partitioning of organic compounds in octanol-water systems. Environ. Sci. Technol., 16, 4-10.Eichmann, R., Ketseridis, G., Schebeske, G., Jaenickec, R., Hahn, J., Warneck, P., and Junge, C. (1979) N-Alkanes studies in the troposphere —Ⅰ: Gas and particulate concentrations in North Atlantic air, Atmos. Environ., 13, 587-599.Eichmann, R., Ketseridis, G., Schebeske, G., Jaenickec, R., Hahn, J., Warneck, P., and Junge, C. (1980) N-Alkanes studies in the troposphere —Ⅱ: Gas and particulate concentrations in Indian air, Atmos. Environ., 14, 695-703.EPA (1996) Air quality criteria for particulate matter. Technical Report, EPA/600/p-95/001aF.Finizio, A., Mackay, D., Bidleman, T., Harner, T. (1997) Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals. Atmos. Environ., 31, 2289-2296.Glikson, M. (1998) Microscopical TSP studies: comparing a city center and suburban sites in Canbera, Atmos. Environ., 22, 1745-1758.Hart, K. M. (1989) Ph.D. thesis, Oregon Graduate Institute.Hinckley, D. A., Bidleman. T. F. and Foreman, W. T. (1990) Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatographic retention data. J. Chem. Engng. Data, 35, 232-237.Karickoff, S. W., Brown, D. S., Scott, T. A. (1979) Sorption of hydrophobic pollutants on natural sediments. Water research, 13, 241-248.Karickoff, S. W. (1984) Organic pollutant sorption in aquatic system. Journal of Hydraulic Engineering, 110, 707-735.Kadowaki, S. (1994) Characterization of carbonaceous aerosols in Nagoya urban aera. 2. Behavior and origin of particulate n-alkanes. Environ. Sci. Technol., 28, 129-135.Keywood, M.D., Ayers, G.P., Gras, J. L., Gillett, R.W., and Cohen, D.D. (1999) Relationship between size segregated mass concentration data and ultrafine particle number concentrations in urban areas. Atmos. Environ., 33, 2907-2913.Lazaridis, M. (1999) Gas-particle partitioning of organic compounds in the atmosphere. J. Aerosol Sci., 30, 1165-1170.Liang, C. and Pankow, J. F. (1996) Gas/particle partitioning of organic compounds to environmental tobacco smoke (ETS);partition coefficient measurements by desorption and comparison to urban particulate material. Environ. Sci. Technol., 30, 2800-2805.Odum, R. J.,Hoffmann, T., Collins, F. B., Flagan, R. C. and Seinfeld, J. H. (1996) Gas/particle partitioning and secondary organic aerosol yields. Environ. Sci. Technol., 30, 2580-2585.Oh, J. E., Choi, J. S. and Chang, Y. S. (2001) Gas/particle partitioning Polychorinated dibenzo-p-dioxins and dibenzofurans in atmosphere;evaluation of predicting models. Atmos. Environ., 35, 4125-4134.Pandis S. N., Harley R. A., Cass G. R. and Seinfeld, J. H. (1992) Secondary organic aerosol formation and transport. Atmos. Environ., 26A, 2269-2282.Pankow, J. F. (1987) review and comparative analysis of the theories on partitioning between the gas and aerosol particle in the atmosphere. Atmos. Environ.,21, 2275-2283.Pankow, J. F. (1991) Common y-intercept and single compound regressions of gas-particle partitioning data vs 1/T. Atmos. Environ., 25A, 2229-2239.Pankow, J. F., Bidleman, T. F. (1992) Interdependence of the slopes and intercepts from log-log correlations of measured gas-particle partitioning and vapor pressure-I. Theory and analysis of available data. Atmos. Environ., 26A, 1071-1080.Pankow, J. F. (1994a) An absorption model of gas/particle partitioning in the atmosphere. Atmos. Environ., 28, 185-188.Pankow, J. F. (1994b) An absorption model of gas/particle partitioning involved in the formation of secondary organic aerosol. Atmos. Environ., 28, 189-193.Pankow, J. F. (1998) Further discussion of the octanol/air partition coefficient Koa as a correlating parameter for gas/particle partitioning coefficients. Atmos. Environ., 32, 1493-1497.Rogge, W.F., Hildemann, L.M., Mazurek, M.A., and Cass, G.R. (1993a) Sources of organic aerosol. 2. noncatalyst and catalystequipped automobile and heavy duty diesel trucks. Environ. Sci. Technol., 27, 636-651.Rogge, W.F., Hildemann, L.M., Mazurek, M.A., and Cass, G.R. (1993b) Sources of organic aerosol. 3. road dust, tire debris and organometallic brake lining dust : roads as sources and sinks. Environ. Sci. Technol., 27, 1892-1904.Rogge, W.F., Hildemann, L.M., Mazurek, M.A., and Cass, G.R. (1993c) Sources of organic aerosol. 4. particulate abrasion products from leaf surfaces of urban plants. Environ. Sci. Technol., 27, 2700-2711.Rogge, W.F., Hildemann, L.M., Mazurek, M.A., and Cass, G.R. (1993d) Sources of organic aerosol. 5. natural gas home appliances. Environ. Sci. Technol., 27, 2736-2744.Simoneit, B.R.T., Mazurek M.A., and Cahill T.A. (1980)Contamination of the Lake Tahoe air basin by high molecular petroleum residues. A. P. C. A. J., 30, 387-390.Simoneit, B.R.T. and Mazurek M.A. (1982) Organic Matter of the Troposphere —Ⅱ. Natural Background of Biogenic Lipid Matter in Aerosol Over the Rural Western United States. Atmos. Environ., 16, 2139-2159.Simoneit, B.R.T. (1984)Organic Matter of the Troposphere —Ⅲ. Characterization and sources of petroleum and pyrogenic residues in aerosols over the Western United States. Atmos. Environ., 18, 51-67.Simoneit, B.R.T. (1989) Organic Matter of the Troposphere —Ⅴ. “Appliction of molecular marker analysis to biogenic emissions into the troposphere for source reconciliation. J. Atmos. Chem., 8, 251-275.Turpin, B. J. and Huntzicker, J. J. (1991) Secondary formation of organic aerosol in the Los Angeles Basin:a descriptive analysis of organic and elemental carbon concentrations. Atmos. Environ., 23A, 201-215.Van Vaeck, L., Van Cauwenberghe, K. and Janssens, J. (1984) . Atmos. Environ., 18, 417-430.Yamasaki, H., Kuwata, K., Kiyamoto, H. (1982) Effects of temperature on aspects of airborne polycyclic aromatic hydrocarbons. Environ. Sci. Technol., 16, 189-194.江長陵,1989,”多環芳香族烴在大氣中固氣相分佈模式之研究”,國立台灣大學環境工程研究所,碩士論文。方怡欽,1994,”都會區大氣中氯化多環芳香烴化合物之研究”,國立成功大學環境工程研究所,碩士論文。羅友舜,1995,”室內環境多環芳香烴特性之研究”,國立台灣大學公共衛生研究所,碩士論文。林介川,1996,”大氣中多環芳香烴高度分佈特徵之研究”,國立雲林科技大學環境與安全工程技術研究所,碩士論文。高雄市環保局報告,1997,”高雄市都會區酸沉降及懸浮微粒重金屬成分調查研究”。林紫嵐,1997,”台北都會區大氣中所含正烷類之特性”,國立台灣大學公共衛生研究所,碩士論文。袁景嵩,1998,”台灣南部地區PM2.5及PM10懸浮微粒濃度及物化特性之時空變化趨勢探討”,中山大學環境工程研究所,碩士論文。高雄市環保局報告,1999,”八十八年度高雄市大氣懸浮微粒PM2.5及PM2.5-10之化學成分與來源推估計畫”。王宏恩,1999,”懸浮微粒物化特徵成分分析及相關性探討”,中山大學環境工程研究所,碩士論文。李芝珊、林家和,2000,”PM1/PM2.5/PM10氣懸微粒特性之探討”,第八屆氣膠科技研討會論文集,pp.17-21。張榮偉,2000,”都市垃圾焚化爐周界空氣中戴奧辛之氣固相分布研究”,國立成功大學環境醫學研究所,碩士論文。李鎌弛,2001,”大氣懸浮微粒有機成分正烷類組成分析”,國立高雄第一科技大學環境與安全衛生工程研究所,碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top