跳到主要內容

臺灣博碩士論文加值系統

(34.236.192.4) 您好!臺灣時間:2022/08/17 17:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭才華
研究生(外文):Tsai-Hua Kuo
論文名稱:高濃度酒糟廢液氫化甲烷化之產能研究
論文名稱(外文):Feasibility Study on Anaerobic Hydrogenesis-Methanogenesis Process for High Strength Wastewater
指導教授:樊國恕樊國恕引用關係
指導教授(外文):Kuo-Shun Fan
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:123
中文關鍵詞:酒糟廢液兩相式氫氣水力停留時間
外文關鍵詞:brewery wastewatertwo-phasehydrogenhydraulic retention time (HRT)
相關次數:
  • 被引用被引用:27
  • 點閱點閱:579
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

厭氧醱酵反應可有效處理高濃度有機固體廢棄物,藉由不同族群的微生物將有機物質轉化為甲烷及二氧化碳,微生物主要分為酸生成菌及甲烷生成菌,因此傳統上將厭氧處理系統分為酸化及甲烷化二個反應槽。氫可由醱酵程序中生成,氫醱酵過程中並伴隨乙酸及丁酸的產生,然而氫有效地被甲烷生成菌所利用,而不易存留,近年來氫能已被公認為未來能源之希望,因此本研究將傳統的酸化甲烷化系統改良為氫化甲烷化程序,以期提升氫的產能及整體厭氧處理的能源效率。
本研究探討氫化與甲烷化在不同水力停留時間組合之產能研究,並與單階段厭氧醱酵反應進行比較。實驗反應槽為完全攪拌混合式反應槽(CSTR),氫化、甲烷化與單階段反應槽之實反應體積分別為2升、4升及8升,以酒糟廢液為進流基質,其濃度為控制於110 g COD / L。實驗分為實驗組(氫化甲烷化)及對照組(單階段反應槽)共12個試程,其中氫化甲烷化反應共9個試程,分別控制氫化槽HRT為24、16、8小時及甲烷槽HRT為10、15、20天,傳統單階段厭氧醱酵反應共3個試程(HRT 10、15、20天)。
氫化槽研究結果顯示之氫氣濃度、產氫速率及基質轉化率皆隨HRT的縮短而提高,以HRT 8小時為最佳,分別為32%、5.417 L-H2 / L-reactor / day及21 ml-H2 / g VS added。氫化反應中,乙醇、乙酸及丁酸可視為其基本指標,當進流基質濃度增加時乙醇濃度立即升高,經過一至二個HRT後,乙酸及丁酸方開始增加,因此乙醇可做為基質濃度改變之即時指標,當乙醇、乙酸濃度降低並且丁酸濃度增加時,氫化效率則上升。氫化反應之酸化效率以HRT 24小時為最佳,代謝產物以乙酸生成為主,酸化效率的提高並不代表有較佳的氫化反應。
甲烷槽實驗中,甲烷濃度隨水力停留時間的增加而提高,然甲烷生成速率與基質轉化率皆隨HRT的增加而減少。甲烷槽之產能受進流基質(氫化槽放流液)中揮發酸影響而有所差異,當進流基質含有可直接被甲烷生成菌所利用之乙酸(氫化槽HRT 24小時),可得較佳之甲烷生成速率,反之,當進流液之揮發酸以丁酸為主時(氫化槽HRT 8小時),反應槽則處於酸化階段及醋酸生成階段,甲烷生成速率則降低。甲烷槽HRT增加時,丙酸於反應槽內累積並對甲烷生成菌造成抑制,並使得反應朝向短鏈脂肪酸的產生。
氫化及甲烷化之單位反應槽每日可生成之能源及單位基質可轉換之能源,分別介於 2.5~14.2、3.1~25.6 kcal / L-reactor /day及 0.16~0.23、1.5~5.9 kcal / g VS removed,其中氫化槽以HRT 8小時為最佳,甲烷槽則以氫化槽HRT 24小時及甲烷槽HRT 10天之組合為最高。單階段厭氧醱酵之產能則為1.3~2.9 kcal / L-reactor /day及 0.8 kcal / g VS removed,皆低於於氫化甲烷化系統之產能。氫化甲烷化系統之總產能效率(kcal / L-reactor / day)以多項式迴歸及應答曲面分析,以氫化槽HRT 24小時及甲烷槽HRT 10天之總產能效率為最佳,氫化槽HRT 8小時及甲烷槽HRT 10天次之,分別為25 kcal / L-reactor / day及20 kcal / g VS removed。
ABSTRACT

Anaerobic digestion is a widely accepted process for high strength organic solid waste disposal. Organic waste could be converted to methane and carbon dioxide by different groups of microorganisms. These microorganisms are largely categorized to acidogenic and methanogenic bacteria. To enhance the performance of anaerobic digestion, optimal environments should be provided for major group of microorganisms. Phase separation in anaerobic digesters was developed and achieved good results. The two-phase system of acid- and methane-forming reactors are widely accepted. Hydrogen is evolved in anaerobic fermentation process. However, it was effectively converted to methane by methanogenic bacteria. Recently, hydrogen-fuel has been universally recognized as energy of the future. Biohydrogen production also draws great attention and has some achievement. Since the low conversion rate of hydrogen fermentation, the discharge still contains high concentration of organics which rich in energy. In order to promote total energy production, more studies are needed for the system of hydrogen production and the discharge utilization.
The purpose of this study was to investigate the energy production of hydrogenesis-methanogenesis process with different hydraulic retention times (HRT). A two-stage system (hydrogenesis-methanogenesis) and a single-stage system were set-up for the study, all reactors were complete stirred tank reactors and the effective volume were 4, 8 and 2 liter, respectively. Concentrate brewery wastewater from a nearby plant was collected as the substrate and the concentrate was adjusted to 110 g/L in COD for the feed. The two-stage system was operated in 9 consequent sets. In which, the hydrogenesis reactor was controlled at 3 different HRT, 24, 16 and 8 hours. The methanogenesis reactor was fed with hydrogenesis reactor effluent and controlled at 3 different HRT, 10, 15 and 20 days. The single-stage reactor was operated at HRT of 10, 15 and 20 days individually. Totally, there were 12 runs in the study.
In the hydrogenesis reactor tests, the optimal hydrogen concentration, hydrogen production rate and H2/VS conversion occurred at 8 hr HRT which were 32 %, 5.42 L-H2/ L-reactor/ day and 21 ml-H2/g VS added, respectively. These values decreased as HRT increased. Hydrogen production efficiency increased with ethanol, acetic acid decreased and butyric acid increased. The response of ethanol conc. was instantly with the increase of substrate conc., while it was 1 to 2 HRT later for acetic and butyric acids to increase. The optimal acidification efficiency occurred at HRT 24 hrs, and the major volatility fatty acid was acetic acid. This was no indication that high acidification efficiency resulted in a better hydrogen production reaction.
In the methanogenesis reactor tests, methane content increased with HRT. On the contrary, methane production and CH4/VS conversion decreased as HRT increased. It determined that energy production was affected by the VFAs of influent (effluent of hydrogenesis reactor). As the influent contented higher acetic acid (HRT 24 hours in hydrogenesis reactor), which could be direct utilized by methanogenic microorganism, the reactor presented a better methane production. On the other hand, as the methane production rate decreased, the major VFA of substrate was butyric acid (HRT 8 hours in hydrogenesis reactor). It believed that the reactor was in acidogenesis and acetogenesis stage. It also noted that propionic acid was accumulated as HRT increased which inhibited the methanogenic activities and caused the pathway toward short chain fatty acid formation instead of methane generation.
The energy production in the two-stage system was 2.5~14.2 kcal/L-reactor/day and 0.16~0.23 kcal/g VS removed in the hydrogenesis reactor and 3.1~25.6 kcal/L-reactor/day and 1.5~5.9 kcal/g VS removed in the methanogenesis reactor, respectively. The reactor with 8 hr HRT had the highest energy production in the hydrogen reaction, while the reactor with 10-day HRT fed with 24-hr HRT hydrogen reactor had the highest energy production in the methanogenesis reaction. However, energy production was as low as 1.3~2.9 kcal/ L-reactor/day and 0.8 kcal/g VS removed in the single-stage anaerobic fermentation. By using the methods of multiple regression and response surface design, the optimal energy production was the combination of 24- hr HRT hydrogenesis reactor and 10-day methanogenesis reactor, and then followed with 8-hr hydrogenesis reactor and 10-day methanogenesis reactor. The corresponding energy production were 25 and 20 kcal / L-reactor / day, respectively.
目 錄
中文摘要Ⅰ
英文摘要Ⅲ
誌謝Ⅵ
目錄Ⅶ
表目錄Ⅹ
圖目錄ⅩⅠ
第一章 前言1
1.1 研究背景1
1.2 研究目的3
第二章 文獻回顧4
2.1 厭氧醱酵程序4
2.2 單階段厭氧醱酵反應9
2.3 兩相式厭氧醱酵反應13
2.3.1 微生物共生現象15
2.3.2 兩相式厭氧醱酵-微生物相16
2.3.3 兩相式厭氧醱酵-溫度分相24
2.4 厭氧產氫微生物25
2.4.1 厭氧產氫微生物特性25
2.4.2 厭氧產氫微生物之代謝機制27
2.5 厭氧醱酵中間產物扮演角色29
2.5.1 氫29
2.5.2 揮發性脂肪酸30
2.5.3 醇類及溶劑34
2.5.4 氨氮34
2.6 環境因子對厭氧醱酵之影響36
2.6.1 水力停留時間36
2.6.2 pH值37
2.6.3 溫度37
2.6.4 營養塩38
2.6.5 衝擊變化39
第三章 研究設計與方法40
3.1 厭氧醱酵產能實驗規劃流程40
3.2 研究設備與方法41
3.2.1 實驗材料41
3.2.2 植種來源41
3.2.3 厭氧產氫菌菌種前處理44
3.2.4 連續式實驗設備與器材44
3.2.5 實驗步驟48
3.3 實驗分析方法49
3.3.1 水質分析49
3.3.2 儀器分析58
3.4 數據整理與分析63
3.4.1 效率指標63
3.4.2 多項式迴歸與應答曲面分析64
第四章 結果與討論65
4.1 氫化反應槽65
4.1.1 反應槽啟動及連續操作67
4.1.2 操作期間之各項因子探討69
4.1.3 氫化反應代謝產物之探討75
4.1.4 氫化與酸化反應操作條件與效率之探討82
4.2 甲烷化反應槽86
4.2.1 反應槽啟動及連續操作86
4.2.2 操作期間之各項因子探討89
4.2.3 醋酸生成與甲烷生成間之關係96
4.2.4 甲烷反應槽之產能比較98
4.3 單階段厭氧醱酵反應100
4.3.1 反應槽啟動連續操作101
4.3.2 操作期間之各項因子探討101
4.3.3 單階段厭氧醱酵之比較105
4.4 產能效率與操作條件107
第五章 結論與建議110
5.1 結論110
5.2 建議111
參考文獻112
附錄 揮發性有機酸及醇類圖譜118
參考文獻APHA, AWWA and AEF, 1995, Standard methods for examination of water and wastewater, 19th edition, Washington, DC, USA. Azbar, N., Ursillo, P., and Speece, R.E., 2001, Effect of process configuration and substrate complexity on the performance of anaerobic processes, Wat. Res., Vol. 35, No. 3, pp. 817-829.Batstone, D.J., 1999, High rate anaerobic treatment of complex wastewater, The University of Queensland, PhD thesis. Burtscher, C., Fall, P.A., Christ, O., Wilderer, P.A., and Wuertz, S., 1998, Detect and survival of pathogens during two-stage thermophilic/mesophilic anaerobic treatment of suspended organic waste, Wat. Sci. Tech., Vol. 38, No. 12, pp. 123-126, 1998.Chynoweth, D.P., Owens, J.M., and Legrand, R., 2001, Renewable methane from anaerobic digestion of biomass, Renewable Energy 22, pp. 1-8. Claassen, P.A.M., van Lier, J.B., Contreras, A.M.L., van Niel, E.W.J., Sijtsma, L., Stams, A.J.M., de Vries, S.S., and Weusthuis,, R.A., 1999, Utilisation of biomass for the supply of energy carriers, Appl. Microbiol Biotechnol, Vol. 52, pp. 741-755.Conrad, R., 1999, Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soil and sediments, FEMS Microbiology Ecology, Vol. 28, pp. 193-202. Das, D., and Veziroglu, T.N., 2001, Hydrogen production by biological processes: a survey of literature, International Journal of Hydrogen Energy 26, 2001, pp. 13-28.Demirbas, A., 2001, Biomass resource facilities and biomass conversion processing for fuels and chemicals, Energy Conversion and Management, Vol.42, pp. 1357-1378. Dugba, P.N., and Zhang, R., 1999, Treatment of dairy wastewater with two-stage anaerobic sequencing batch reactor systems — thermophilic versus mesophilic operations, Bioresource Technology, Vol. 68, pp. 225-233.Fang, H.H.P., and Liu, H., 2002, Effect of pH on hydrogen production from glucose by a mixed culture, Bioresource Technology, Vol. 82, pp. 87-93.Fang, H.H.P., and Yu, H.Q., 2001, Acidfication of lactose in wastewater, Journal of Environmental Engineering, Vol. 127 No.9, pp. 825-831.Fang, H.H.P., and Yu, H.Q., 2002, Mesophilic acidification of gelatinaceous wastewater, Journal of Biotechnology, Vol. 93, pp. 99-108.Fukuzaki, S., Nishio, N., Shobayashi, M., and Nagai, S., 1990, Inhibition of the fermentation of propionate to methane by hydrogen, acetate and propionate, Applied and Environmental Microbiology, Vol. 56, No. 3, p. 719-723.Gaudy, A.F., and Gaudy, E.T., 1980, Microbiology for environment scientists and engineers, Mc-Graw Hill.Ghaly, A.E., 1996, A comparative study of anaerobic digestion of acid cheese whey and dairy manure in a two-stage reactor, Bioresource Technology, Vol. 58, pp. 61-72.Ghosh, S., 1986a, Comparative studies of temperature effects on single-stage and two-phase anaerobic digestion, Biotechnology and Bioengineering Symp., No. 17, pp. 365-377. Ghosh, S., 1986b, Two-phase anaerobic digestion of high-metal-content municipal-industrial sludge, Biomass, Vol. 10, pp. 97-107.Ghosh, S., 1984, Solid-phase digestion of low-moisture feeds, Biotechnology and Bioengineering Symp., No. 14, pp.365-382.Ghosh, S., 1981, Two-phase anaerobic digestion of organic wastes, 8th United States/Japan Conference on Sewage Treatment Technology, pp. 929-949.Ghosh, S., Ombregt, J.P., and Pipyn, P., 1985,Methane production from industrial wastes by two-phase anaerobic digestion, Water Res., Vol. 19, No. 9, pp. 1083-1088.Ghosh S., and Taylor, D.C., 1999, Kraft-mill biosolids treatment by conventional and biphasic fermentation, Wat. Sci. Tech., Vol. 40, No. 11-12, pp. 169-177.Girbal, L., Croux, C., Vasconcelos, I., and Soucaille, P., 1995, Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824, FEMS Microbiology Reviews, Vol. 17, pp. 287-297.Guerrero, L., Omil, F., Méndez, R., and Lema, J.M., 1999, Anaerobic hydrolysis and acidogenesis of wastewaters from food industries with high content of organic solids and protein, Wat. Res., Vol. 33, No. 15, pp. 3281-3290.Gujer, W., and Zehnder, A.J.B., 1983, Conversion processes in anaerobic digestion, Wat. Sci. Tech., Vol. 15, pp. 127-167. Guwy, A.J., Hawkes, F.R., Hawkes, D.L., and Rozzi, A.G., 1997, Hydrogen production in a high rate fluidized bed anaerobic digester, Wat. Res. Vol. 31, No. 6, pp. 1291-1298..Herrmann, A.P., and Janke, H.D., 2001, Cofermentation of rutin and hesperidin during two-stage anaerobic pre-treatment of high-loaded brewery wastewater, Wat. Res. Vol. 35, No. 11, pp. 2583-2588.Hill, D.T., and Bolte, J.P., 2000, Methane production from low solid concentration liquid swine waste using conventional anaerobic fermentation, Bioresource Technology, Vol. 74, pp. 241-247.Hobson, P.N., and Shaw, B.G., 1976, Inhibition of methane production by Methanobacterium formicicum, Water Research, Vol. 10, pp. 849-852.Inanc, B., Matsui, S., and Ide, S., 1999, Propionic acid accumulation and controlling factors in anaerobic treatment of carbohydrate: an investigation on the role of hydrogen gas, Wat. Sci. Tech., Vol. 40, No. 1, pp. 93-100.Inanc, B., Matsui, S., and Ide, S., 1996, Propionic acid accumulation and controlling factors in anaerobic treatment of carbohydrate: effect of H2 and pH, Wat. Sci. Tech., Vol. 34, No. 5-6, pp. 317-325.Ince, O., 1998, Performance of a two-phase anaerobic digestion system when treating dairy wastewater, Wat. Res., Vol. 32, No. 9. pp. 2707-2713.Jeyaseelan, S., and Matsuo T., 1995, Effects of phase separation in anaerobic digestion on different substrates, Wat. Sci. Tech., Vol. 31, No. 9,pp. 153-162. Lau, I.W.C., and Fang, H.H.P., 1997, Effect of temperature shock to thermophilic granules, Wat. Res. Vol. 31, No. 10, pp. 2626-2632Lay, J.J., 2000, Modeling and optimization of anaerobic digested sludge converting starch to hydrogen, Biotechnol. Bioeng., Vol. 68, No. 3, pp. 269-278. Lay, J.J., Lee, Y.J., and Noike, T.,1999, Feasibility of biological hydrogen production from organic fraction of municipal solid waste, Wat. Res., Vol. 33, No. 11, pp.2579-2586. Lay, J.J., Li, Y.Y., and Noike, T., 1998, The influence of pH and ammonia concentration on the methane production in high-solids digestion processes, Water Environment Research, Vol. 70, No. 5, pp. 1075-1081.Lay, J.J., 1997, Analysis of methane production from different anaerobic environments, Tohoku University in Japan, PhD thesis.Lay, J.J., Li, Y.Y., and Noike, T., 1997, Influences of pH and moisture content on the methane production in high-solids sludge digestion, Wat. Res., Vol. 31, No. 6, pp. 1518-1524.Leal, K., Chacin, E., Behling, E., Gutierez, E., Fernandez, N., and Forster, C.F., 1998, A mesophilic digestion of brewery wasterwater in an unheated anaerobic filter, Bioresource Technology 65, p. 51-55. Liu, T., 1998, Anaerobic digestion of solid substrates in an innovative two-phase plug-flow reactor (TPPFR) and a conventional single-phase continuously stirred-tank reactor, Wat. Sci. Tech., Vol. 38, No. 8-9, pp. 453-461.Maharaj, I., and Elefsiniotis, P., 2001, The role of HRT and low temperature on the acid-phase anaerobic digestion of municipal and industrial wastewaters, Bioresource Technology, Vol. 76, pp. 191-197.McCarty, P.L., and Mosey, F.E., 1991, Modelling of anaerobic digestion processes (a discussion of concepts), Wat. Sci. Tech. Vol. 24, No. 8, pp.17-59.Mizuno, O., Dinsdale, R., Hawkes, F.R., Hawkes, D.L., and Noike, T., 2000, Enhancement of hydrogen production from glucose by nitrogen gas sparging, Bioresource Technology, Vol.73, pp. 59-65. Mtz.-Viturti, A., Mata-Alvarez, J., and Cecchi, F., 1995, Two-phase continuous anaerobic digestion of fruit and vegetable wastes, Resources, Conservation and Recycling, Vol. 13, pp. 257-267.Nandi, R., and Sengupta, S., 1998, Microbial production of hydrogen: an overview, Critical Reviews in Microbiology, Vol. 24, No. 1, pp. 61-84.Nielsen, A.T., Amandusson, H., Bjorklund, R., Dannetun, H., Ejlertsson, J., Ekedahl, L.G., Lundstrom, I., and Svensson, B.H., 2001, Hydrogen production from organic waste, International Journal of Hydrogen Energy, Vol.26, pp. 547-550. Pohland, F.G., and Ghosh, S., 1971, Developments in anaerobic stabilization of organic wastes- The two-phase concept, Environmental Letters, Vol. 1, No.4, 1971, pp. 255-266Rajeshwari, K.V., Balakrishnan, M., Kanssl, A., Lata, K., and Kishore, V.V.N, 2000, State-of-the-art of anaerobic digestion technology for industrial wastewater treatment, Renewable and Sustainable Energy Reviews, Vol.4, pp. 135-156. Raynal, J., Delgenès, J.P., and Moletta, R., 1998, Two-phase anaerobic digestion of solid wastes by a multiple liquefaction reactors process, Bioresource Technology, Vol. 65, pp. 97-103.Schink, B., and Friedrich, M., 1994, Energetics of syntorphic fatty acid oxidation, FEMS Microbiology Reviews, Vol. 15, pp. 85-94. Schnürer, A., Zellner, G., and Svensson, B.H., 1999, Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors, FEMS Microbiology Ecology, Vol. 29, pp. 249-261.Speece, R.E., 1996, Anaerobic biotechnology for industrial wastewaters, Archae Press, Tennessee.Spiegel, R.J., Thorneloe, S.A., Trocciola, J.C., and Preston, J.L., 1999, Fuel cell operation on anaerobic digester gas: conceptual design and assessment, Waste Management, Vol. 19, pp. 389-399.Stams, A.J.M, Dijkema, C., Plugge, C.M., and Lens, P., 1998, Contribution of 13C-NMR spectroscopy to the elucidation of pathways of propionate formation and degradation in methanogenic environments, Biodegradation, Vol. 9, pp. 463-473.Sterling, M.C., Lacey, R.E., Engler, C.R., and Ricke, S.C., 2001, Effect of ammonia nitrogen on H2 and CH4 production during anaerobic digestion of dairy manure, Bioresource Technology, Vol. 77, pp. 9-18.Syu, M.J., 2001, Biological production of 2,3-butanediol, Appl. Microbiol Biotechnol, Vol. 55, pp. 10-18.Ueno, Y., Kawai, T., Sato, S., Stsuk, S., and Morimoto, M., 1995, Biological production of hydrogen from cellulose by natural anaerobic microflora, J. Ferment. Technol., Vol. 79, No. 4, pp. 395-397.van Haandel A.C., and Lettinga, G., 1994, Anaerobic sewage treatment, John Wiley & Sons Ltd, England.Vavilin, V.A. and Lokshina, L.Ya., 1996, Modeling of volatile fatty acids degradation kinetics and evaluation of microorganism activity, Bioresource Technology, Vol. 57, pp. 69-80.Veeken, A., Kalyuzhnyi, S., Scharff, H., and Hamelers, B., 2000, Effect of pH and VFA on hydrolysis of organic solid waste, Journal of Environmental Engineering, pp. 1076-1081.Veeken, A., and Hamelers, B., 1999, Effect of temperature on hydrolysis rates of selected biowaste components, Bioresource Technology, Vol. 69, pp. 249-254.Voolapalli, R.K., and Stuckey, D.C., 2001, Hydrogen production in anaerobic reactors during shock loads — influence of formate production and H2 kinetics, Wat. Res., Vol. 35, No. 7, pp. 1831-1841. Yilmazer, G., and Yenigün, O., 1999, Two-phase anaerobic treatment of cheese whey, Wat. Sci. Tech., Vol. 40, No. 1, pp. 289-295.Zehnder, A.J.B., 1988, Biology of anaerobic microorganisms, John Wiley & Sons, New York.甘乃如,2001,酸鹼度、水力停留時間及食微比對高濃度酒糟廢液生化產氫之影響,高雄第一科技大學,碩士論文。林明正,2000,CSTR厭氧產氫反應槽之啟動及操作,逢甲大學,碩士論文。林秋裕,1997,環境工程微生物學,二版,國彰出版社,台中。林秋裕、林明正、周家弘,2000a,CSTR反應槽馴養不同污泥之產氫能力探討,第二十五屆廢水處理研討會,頁362-367,雲林,十二月一、二日。林秋裕、周家弘,2000b,ASBR法應用於懸浮性厭氧微生物產氫之研究,第二十五屆廢水處理研討會,頁357-361,雲林,十二月一、二日。張逢源、周家弘、林秋裕,2001,UASB與ASBR反應槽產氫能力之探討,第二十六屆廢水處理技術研討會,頁1-74,高雄,十二月十四、十五日。賴奇厚、陳晉照、林秋裕、林屏杰、張嘉修,2001,營養鹽類對厭氧產氫之影響,第二十六屆廢水處理研討會,頁1-69,高雄,十二月一、二日。鄭幸雄、李東峰、梁德明,2000,實廠厭氧生物反應槽產氫現象,第二十五屆廢水處理研討會,頁388-392,雲林,十二月一、二日。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊