跳到主要內容

臺灣博碩士論文加值系統

(3.236.225.157) 您好!臺灣時間:2022/08/15 23:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張益華
研究生(外文):Yi-Hua Chang
論文名稱:高濃度酒糟廢液氫化-甲烷化之動力模式分析
論文名稱(外文):Kinetic Analysis of Anaerobic Hydrogenesis-Methanogenesis Process for High Strength Brewery Wastewater
指導教授:樊國恕樊國恕引用關係
指導教授(外文):Kuo-shuh Fan
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:114
中文關鍵詞:Contois modelMonod model氫化─甲烷化動力模式分析Hashimoto model動力常數
外文關鍵詞:Contois modelHashimoto modelkinetic coefficientMonod modelKinetic analysisHydrogenesis-methanogenesis
相關次數:
  • 被引用被引用:7
  • 點閱點閱:350
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘 要


厭氧醱酵藉由不同族群微生物作用,可將有機物轉換成甲烷、二氧化碳、氫氣、酸及醇等產物,而傳統單槽厭氧醱酵中,氫氣僅為其一中間產物,很快為甲烷生成菌利用產生甲烷,因此系統中應無氫氣存在,然而兩相式厭氧醱酵系統中,其酸化槽卻可發現氫氣,因此,為取得最佳產能效率應促成氫氣及甲烷的產生,本研究即利用氫化─甲烷化兩相式系統方法進行,並利用微生物動力模式對系統生化反應進行模式化分析。
本研究主要探討不同水力停留時間組合下,對氫化及甲烷化產能之影響,並利用動力模式對其反應程序進行分析。實驗設備包括氫化槽(4L)及甲烷槽(8L),實驗操作上,以酒糟廢液,濃度100 g COD/L為氫化槽進流基質,氫化槽之出流為甲烷槽進流基質,其中氫化槽之水力停留時間分別為24、16、8小時,甲烷槽之水力停留時間分為10、15、20天,全部實驗共有九組試程。
氫化槽在水力停留時間為8小時,其產氫效率表現最佳(5.42 L H2/L-reactor- day),COD去除率為3.32%,體積轉化率10.2 g/L-day,基質利用率為0.25 gCOD/gVSS-day。結合Monod、Contois及Chen & Hashimoto三種常用之微生物動力模式,對不同水力停留時間之氫化槽進行動力分析,分別求得當水力停留時間為24小時之氫化槽傳輸係數(k)=1.68hr-1、水解係數(Kh)=0.0024 hr-1、最大比生長速率(μm)=0.107 hr-1、半飽和常數(Ks)=0.598mg/L及生長係數(Y)=0.047gVSS/gCOD,16小時之氫化槽傳輸係數(k)=4.03hr-1、水解係數(Kh)=0.0034 hr-1、最大比生長速率(μm)=0.241hr-1、半飽和常數(Ks)=0.739mg/L及生長係數(Y)=0.107gVSS/gCOD,8小時之氫化槽傳輸係數(k)=4.73hr-1、水解係數(Kh)=0.0158 hr-1、最大比生長速率(μm)=0.368 hr-1、半飽和常數(Ks)=0.773mg/L及生長係數(Y)=0.111gVSS/gCOD等動力係數,比較各試程之動力係數,由水解係數可得氫化反應的動力限制步驟應為水解作用;當HRT愈接近臨界時間時,代謝產物漸以丁酸為主,比較丁酸與半飽和係數可知,產氫菌對基質親和能力隨丁酸濃度上升而降低。利用此一模式對反應槽內狀況進行模擬,模式模擬預測值與實驗值之間相關性,R2分別為0.835(HRT=24hr),0.840(HRT=16hr),0.856(HRT=8hr)。
甲烷槽受到氫化槽出流中所含高濃度揮發酸所影響,所以造成甲烷生成速率的差異,比較甲烷槽不同HRT進流基質中所含揮發酸成分、甲烷生成速率、體積轉化率及基質利用率等指標,發現各組甲烷化實驗,皆受丁酸濃度影響較大,且隨丁酸濃度增加,甲烷醱酵作用愈差。
因甲烷槽進流基質中含有高濃度揮發酸,考慮揮發酸對微生物的抑制影響,故採用Andrew模式作為此一階段之動力模式分析,求得最大比生長速率(μm)、半飽和係數(Ks)、抑制係數(Ki)等動力參數,其中最大比生長速率介於0.32~0.09day-1,半飽和常數介於10.35~1.27 g/L,在試程μm及Ks隨著HRT增長而降低,亦受到進流揮發酸濃度(或丁酸)影響。抑制常數介於90.85~17.62 g/L,一般而言,Ki與μm、Ks有相反的趨勢,Ki隨著HRT的延長而增加,同時亦伴隨著揮發酸的升高而降低,比較各組動力參數,發現在最低半飽和係數時,系統具有最高之比生長速率,而抑制常數降低時,即表示系統之負荷能力亦逐降低。利用這些動力參數對甲烷槽內反應狀況進行模擬,發現其模擬值與實驗值之間相關性R2>0.74,證明模式之適用性。
ABSTRACT

Anaerobic fermentation is formed by many microorganisms, which convert organic materials into methane, carbon dioxide, hydrogen, acids and alcohols. Hydrogen is an intermediate that spontaneously transformed to methane by methane-forming bacteria in conventional anaerobic fermentation. Nevertheless, in two-phase anaerobic fermentation system, hydrogen can be detected in acid-phase digester. In order to research the optimization production rate of hydrogen and methane, this study carried out hydrogenesis-methanogeneis process. Microbial kinetic analyses were applied to study the kinetic model for the biochemical reactions.
This study focused on the effects of HRT on hydrogen and methane production. Kinetic models were used to analyze the reaction steps in hydrogensis and methanogenesis process. The experiment was conducted in a two-stage system. The first stage with 4L in volume served as the hydrogen-forming digester and the second stage with 8L in volume served as the methane-forming digester. Both the reactors were completely stirred. Contrate brewery wastewater from a nearby plant was collected as the substrate and the concentration was adjusted to 110 g/l in COD for the feed. The two-stage system was operated in 9 consequent sets. In which, the hydrogenesis reactor was controlled at 3 different HRT, 24, 16,and 8 hr. The methaanogenesis reactor was fed with hydrogenesis reactor effluent and controlled at 3 different HRT, 10, 15, and 20 days.
For the hydrogen-forming digester, the maximum performance occurred at HRT=8hr which determined that the production hydrogen rate, COD removal efficiency, volumetric conversion efficiency and substrate utilization rate were 5.42 L H2/L-reactor-day, 3.32%, 10.20 g/L-day ,and 0.25 gCOD/gVSS-day, respectively. Three microbial kinetic models including Monod, Contois and Chen & Hashimoto models were adapted to described kinetic condition of the hydrogen-forming digester operated at different HRT. The results showed that as HRT=24 hour, the transport rate coefficient (k), hydrolysis rate coefficient (Kh), maximum specific growth rate (μm), half-saturation coefficient (Ks) and growth yield (Y) were 1.68hr-1, 0.0024hr-1, 0.107hr-1, 0.598mg/L and 0.047 VSS/COD, respectively. As HRT=16 hour, k, Kh, μm, Ks and Y were 4.03h r-1, 0.0034hr-1, 0.241hr-1, 0.739mg/L and 0.107 VSS/COD, respectively. As HRT=8 hour, k, Kh, μm, Ks and Y were 4.73h r-1, 0.0158hr-1, 0.368hr-1, 0.773mg/L and 0.111 VSS/COD, respectively. As compared with these kinetic parameters, it demonstrated that the hydrolysis should be the rate-limiting step for the hydrogen fermentation. The affinity for substrate of hydrogen-forming bacteria was affected by butyric acid. It showed reverse relationship as butyric acid increased. Nevertheless, butyric acid became dominant as HRT closed to the limit. The developed model showed a good fitness with the observed data. The correlation coefficients were between 0.84 and 0.86 for the studied HRTs.
Methane production rate from Methane-forming digester was low, because it was affected by influent substrate that contains high VFA. Comparison with different operating indicators (composition of feeding substrate, methane production rate, etc.) of methane-forming digester in each run, it illustrated that high butyric acid reduced methanogenesis efficiency.
Due to the high strength VFA in substrate inhibited methanogenic activities, Andrew model was employed to analyze the kinetic reaction of methanogenesis. The results indicated that the maximum specific growth rate (μm) was 0.32-0.09 day-1. The half-saturation coefficient (Ks) was 10.35-1.27 g/L. The inhibition coefficient (Ki) was 90.85-17.62g/L. Ki increased with the extension of HRT. On the other hand, it decreased with increasing VFA. However, the variations of μm and Ks showed an inverse pattern with that of Ki . The model showed a reasonable prediction. The R2 were greater than 0.74
目 錄


中文提要Ⅰ
英文提要Ⅳ
誌謝Ⅶ
目錄Ⅷ
表目錄ⅩⅠ
圖目錄ⅩⅡ
第一章 前言1
1-1 研究背景1
1-2 研究目的3
第二章 文獻文顧4
2-1 厭氧反應程序4
2-2 兩相式反應7
2-3 氫化反應8
2-4 速率限制步驟11
2-5 動力模式發展12
2-5-1 Monod動力模式13
2-5-2 Contois動力模式15
2-5-3Chen and Hashimoto動力模式16
2-5-4 Andrew動力模式20
2-6 模式的結合與應用24
第三章 研究設備與方法31
3-1 厭氧醱酵產能實驗規劃流程31
3-2 研究設備31
3-2-1 連續式實驗設備31
3-3 實驗材料36
3-4 實驗步驟37
3-5 化學分析38
3-5-1 水質分析38
3-5-2 儀器分析46
3-6 實驗數據整理與分析51
3-6-1 質量平衡51
第四章 結果與討論55
4-1 氫化槽56
4-1-1 產氫速率與基質利用率之關係60
4-1-2 產氫速率與揮發酸之關係63
4-1-3 總揮發酸與溶解性化學需氧量之相關性68
4-1-4氫化槽之動力參數探討71
4-2 甲烷槽84
4-2-1 甲烷槽中水質監測項目之結果84
4-2-2 揮發酸與甲烷生成速率之關係85
4-2-3 進流基質對各試程甲烷槽之影響93
4-2-4 動力參數之探討95
4-2-5 動力參數之證明98
4-2-6 各動力參數之交互關係102
4-2-7 不同基質對甲烷化之影響104
4-2-8 動力參數之比較106
第五章 結論與建議108
5-1 結論108
5-2 建議109
參考文獻110

表 目 錄


表2-1 不同氫利用反應所需標準Gibbs自由能10
表2-2 酵素與微生物動力學公式18
表3-1氫化反應之營養鹽組成成分36
表3-2甲烷生成之營養鹽組成成分37
表4-1實驗試程55
表4-2氫化槽各試程之相關數據58
表4-3氫化槽中所含揮發酸濃度66
表4-4試程一∼三中所求得之各動力參數72
表4-5本研究所得動力參數與文獻比較83
表4-6甲烷化實驗試程87
表4-7氫化槽及甲烷槽內所含揮發酸濃度87
表4-8甲烷槽穩定操作期間之數據92
表4-9 Andrew模式所求得之動力參數96
表4-10模式所求得之預測值與實驗值之相關性98
表4-11甲烷槽所得之動力參數比較107


圖 目 錄


圖2-1 厭氧消化反應流程圖6
圖2-2 厭氧酸化(假說)之模式11
圖2-3 基質濃度對比生長速率之影響15
圖2-4 由Chen and Hashimoto模式所得停留時間
與體積去除率關係17
圖2-5可逆非競爭性阻礙作用對於酵素動力學之反應21
圖3-1研究規劃流程圖32
圖3-2氫化甲烷化研究設備圖33
圖3-3連續式反應槽設備35
圖3-4連續式反應槽之進料及監測設備35
圖3-5密閉迴流比色法所使用之減量線40
圖3-6分光光度計UV-1601, Shimadzu41
圖3-7凱氏氮消化裝置及抽氣設備44
圖3-8凱氏氮蒸餾設備45
圖3-9凱氏氮減量線45
圖3-10揮發性有機酸之檢量線48
圖3-11醇類檢量線49
圖3-12氣相層析儀機型:Shimadzu GC-8A50
圖3-13氣相層析儀機型:Shimadzu GC-14B50
圖3-14 CSTR反應槽示意圖52
圖4-1氫化槽各試程之水質分析及產氫速率結果59
圖4-2水力停留時間24、16、8小時,在反應操作期間,
其產氫速率與基質利用率之趨勢比較62
圖4-3不同水力停留時間時,基質利用率與比產氫速率之比較63
圖4-4乙酸、丙酸、異丁酸、正丁酸濃度及氫氣濃度
在不同水力停留時間之變化66
圖4-5水力停留時間24、16、8小時揮發酸與產氫速率之變化67
圖4-6氫化槽水力停留時間24、16、8小時之CODs、
揮發酸濃度及CODs去除率之關係70
圖4-7水力停留時間24小時之氫化槽利用模式預測基質變化與
實驗所得數據之相關性74
圖4-8水力停留時間16小時之氫化槽,利用模式預
測基質變化與實驗所得數據之相關性75
圖4-9水力停留時間8小時之氫化槽,利用模式預測
基質變化與實驗所得數據之相關性75
圖4-10水力停留時間24小時之氫化槽,利用模式預測
體積氫氣產生率與實驗所得數據之相關性76
圖4-11水力停留時間16小時之氫化槽,利用模式預測
體積氫氣產生率與實驗所得數據之相關性77
圖4-12水力停留時間8小時之氫化槽,利用模式預測
體積氫氣產生率與實驗所得數據之相關性77
圖4-13傳輸係數、水解係數、基質利用率及產氫速率之關係圖79
圖4-14不同氫化槽停留時間其半飽和係數、生長係數
及揮發酸濃度間關係80
圖4-15甲烷槽1、2、3組實驗,COD、CODs、TS、VS、SS、
VSS於操作期間之變化87
圖4-16甲烷槽4、5、6組實驗,COD、CODs、TS、VS、SS、
VSS於操作期間之變化88
圖4-17甲烷槽7、8、9組實驗,COD、CODs、TS、VS、SS、
VSS於操作期間之變化89
圖4-18各試程之甲烷槽之甲烷生成速率、揮發酸濃度及基質利
用率之間關係91
圖4-19進流基質對各試程之甲烷槽之甲烷生成速率、
揮發酸濃度及基質利用率之影響94
圖4-20試程Ⅰ、Ⅱ、Ⅲ,利用基質抑制模式Andrew所得
比生長速率與基質濃度之關係97
圖4-21試程Ⅰ─第1、2、3組之基質變化預測值與實驗值之
相關性99
圖4-22試程Ⅱ─第4、5、6組之基質變化預測值與實驗值之
相關性100
圖4-23試程Ⅲ─第7、8、9組之基質變化預測值與實驗值之
相關性101
圖4-24甲烷化實驗1∼3、4∼6、7∼9中各動力參數間比較103
圖4-25進流基質對甲烷化實驗第1、4、7組,第2、5、8組,
第3、6、9組中各動力參數間影響
參 考 文 獻1.Abilio Aguilar, Carlos Casas and Juan M. Lema, 1995, Degradation of volatile fatty acids by differently enriched methanogenic cultures: kinetics and inhibition. Wat. Res. Vol. 29, No. 2, pp.505-5092.Adrie Veeken and Bert Hameler, 1999, Effect of temperature on hydrolysis rates of selected biowaste components, Biosurce Technology 693.A. Husain, 1998, Mathematical models of kinetics of anaerobic digestion-a selected review, Biomass and Bioenergy, vol.14, Nos. 5/6, pp.561-5714.Alette A. M. Langenhoff, Narisara Intrachandra and David C. Stuckey, 2000, Treatment of dilute soluble and colloidal wastewater using an anaerobic baffled reactor: influence of hydraulic retention time, Wat. Res. Vol. 34, No. 4, pp.1307-13175.Andrie Veeken and Bert Hamelers, 1999, Effect of temperature on hydrolysis rates of selected biowaste components, Bioresource Technology, vol. 69, pp. 249-2546.APHA, AWWA, WEF, 1995, Standard methods for the examination of water and wasterwater, 19th , APHA, Washington, DC 7.Archana Barthakur, Munindra Bora, and H. Devendra Singh, 1991, Kineticmodel for substrate utilization and methane production in the anaerobic digestion of organic feeds, Biotechol. Prog. Vol. 7, pp.369-376.8.Chetan T. Goudar and Keith A. Strevett, 1998, Estimating growth kinetics of Penicillium chrysogenum by nonlinear regression, Biochemical Engineering Journal, vol. 1, pp.191-1999.Chetan T. Gouder and John F. Devlin, 2001, Nonlinear estimation of microbial and enzyme kinetic parameters from progress curve data. Water Environmental Research, Volume 73, No.3, pp 260-26510.Deniz Tanyloaç, Bekir Salih and Abdurrahman Tanyloaç, 2001, Inhibition kinetic of a commercial mixed culture by ammonium sulfate, Biochemical Engineering, vol. 7, pp. 177-18211.Debabrata Das and T. Nejat Veziroglu, 2001, Hydrogen production by process: a survey of literature, Hydrogen Energy 26, pp. 13-2812.E.R. Viéiten and Ghosh S, 1999, Biogasification of solid wastes by two-phase anaerobic fermentation. Biomas and Bioenergy 16299-309.13.Evan Hughes and John R. Benemann, 1997, Biological fossil CO2 Mitigation. Energy Convers. Mgmt Vol. 38S467-S47314.Gerhard B. Ryhiner, Elmar Heinzle, and Irving J. Dunn, 1993, Modeling and simulation of anaerobic wastewater treatment and its application to control design: case whey. Biotechol. Prog. Vol.9, No.3, pp.332-34315.Gülüm Yilmazer and Orhan Yenigün, 1999, Two-phase anaerobic treatment of cheese whey, Wat. Sci. Tech. Vol.40, No.1, pp. 289-29516.Gujer, W. and Zehnder, A.J.B, 1983, Conversion processes in anaerobic digestion. Wat. Sci. Tech. 15, pp. 127-16717.Harry Audus, 1997, Greenhouse gas mitigation technology: an overview of the CO2 capture and sequestration studies and further activities of the IEA greenhouse gas R&D programme. Energy Vol 22 No.2/3 217-22118.Hardik Patel and Datta Madamwar, 2002, Effects of temperatures and organic loading rates on biomethanation of acidic petrochemical wastewater using an anaerobic upflow fixed-film reactor, Bioresource Technology 82, pp. 65-7119.Herbert H. P. Fang and Hanqing Yu, 2002, Mesophilic acidification of gelatinaceous wastewater, Biotechnology, vol. 93, pp. 99-10820.J. E. Zajic, N. Kosaric and J. D. Brosseau, 1987, Microbial Production of Hydrogen, Adv. Biochem. Eng., Vol.7, pp. 57-10921.J. J Lay, Y-J Lee and Tatsuya Noike, 1999, Feasibility of biological hydrogen production from organic fraction of municipal solid waste, Wat. Res. Vol. 11, pp. 2579-258622.J-J Lay, 1997, Analysis of methane production from different anaerobic environments, pp. 51-5223.J. Romanski, M. Heider and U. Wiesmann, 1997, Kinetics of anaerobic orthophosphate release and substrate uptake in enhanced biological phosphorus removal from synthetic wastewater, Wat. Res. Vol.31, No. 12, pp. 3137-314524.Jian Yu, Yingtao Si, Wan Keung and R. Wong, 2002, Kinetics modeling of inhibition and utilization of mixed volatile fatty acids in the formation of polyhydroxyalkanoates by Ralstonia eutropha, Process Biochemistry 37, pp. 731-738.25.L. Björnsson, M. Murto and B. Mattiasson, 2000, Evaluation of parameters for monitoring an anaerobic co-digestion process, Appl Microbiol Biotechnol 54, pp. 844-849.26.L. Florencio, J. A. Fleld and G. Lettinga, 1995, Substrate competition between methanogens and acetogens during the degradation of methanol in UASB reactors, Wat. Res. Vol. 29, No.3, pp. 915-02227.L. Ya. Lokshina and V. A. Vavilin, 1999, Kinetic analysis of the key stages of low temperature methanogenesis, Ecological Modelling, vol. 117, pp. 285-303.28.Martin Alexander, 1999, Biodegradation and Bioremediation 2th, pp.75~85.29.Marek Mösche and Hans-joachim Jördening, 1999, Comparison of different models of substrate and product inhibition in anaerobic digestion, Wat. Res. Vol.33, pp. 2545~255430.N. Kumar, P. S. Monga, A. K. Biwas and D. Das, 2000, Modeling and simulation of clean fuel production by Enterobacter cloacae ⅡT-BT 08, Hydrogen Energy 23, pp.945-952.31.P. L. McCarty and F. E. Mosey, 1991, Modeling of anaerobic digestion processes(A discussion of concepts)Wat. Sci. Tech. Vol.24, No.8, pp. 17-3332.Ralf Conrad and Melanie Klose, 2000, Selective inhibition of reations involved in methanogenesis and fatty acid production on rice roots, FEMS Microbiology Ecology, Vol. 34, pp.27-34.33.Rajeev Goel, Takashi Mino, Hiroyasu Satoh and Tomonori Matsuo, 1998, Comparison of hydrolytic enzyme systems in pure culture and activated sludge under different electron acceptor aonditions, Wat. Sci. Tech., Vol.37, No. 4-5, pp. 335-34334.R. Arsov, I. Ribarova, N. Nikolov, G. Mihailov, Y. Topalova and E. Khoudary, 1999, Two-Phase anaerobic technology for domestic wastewater treatment at ambient temperature, Wat. Sci. Tech. Vol. 39, No. 8, pp. 115-12235.Ralph Mitchell, 1974 ,Introduction to environmental microbiology, pp.144-14536.R. Nandi and S. Sengupta, 1998, Microbial Production of Hydrogen: An Overview, Critical Reviews in Microbiology, 24, pp. 64-8437.R.Pipatti and I. Savolainen, 1996, Role of energy productionin the control of greenhouse gas emissions from waste management. Energy Convers. Mgmt Vol. 371105-1110.38.S. Ghosh, A. Sajjad and M. P. Henry, 1983, Two-stage Upflow Anaerobic Digestion of Concentrated Sludge. Biotechnology and Bioengineering Symp. No. 13, pp.351-370.39.S. Ghosh, 1981, Two-Phase anaerobic digestion of organic waste. 8th United States/ Japan conference on sewage treatment technology. P929~947, Washington, D. C40.S. Ghosh, 1986, Comparative studies of temperature effects on single-stage and two-phase anaerobic digestion. Biotechnology and Bioengineering Symp. No. 17, pp.355-377.41.S. G. Pavlostathis and E. Giraldo-Gomez., 1991, Kinetics of anaerobic treatment Wat. Sci. Tech. Vol.24, No.8 pp.35-5942.S. Ghosh, 1985, Improved sludge gasification by two-phase anaerobic digestion. 4th International Symposium on Anaerobic Digestion, pp.1265-1283, Guangzhou, China.43.Si-Jing Wang and Kai-Chee Loh, 1999, Modeling the role of metabolic intermediates in kinetics of phenol biodegradation, Enzyme and Microbial Technology, Vol 25, pp. 177-18444.S. Okabe, P. H. Nielsen, W. L. Jones and W. G. Characklis, 1995, Sulfide Production inhibition of Desulfovibric Desulfuricans in batch and continuous cultures, Wat. Res. Vol. 29. pp. 571-578, 199545.S. V. Kalyuzhnyi and V. V. Fedorovich, 1998, Mathematical modeling of competition between sulphate reduction and methanogensis in anaerobic reactor, Biosource Technology, Vol.65, pp. 227-24246.V.A. Vavilin, L.Ya. Lokshina, S.V Rytov, O.R Kotsyurbenko and A.N. Nozhevnikova, 2000, Description of two-step kinetic in methane formation during psychrophilic H2/CO2 and mesophilic glucose conversions. Bioresource Technology 71, pp. 195-20947.Vasily A. Vavilin, Sergey V. Rytov, Ljudmila Ya. Lokshina, Jukka A. Rintala and Gerasimos Lyberatos, 2001, Techinical note:Simplified hydrolysis model for the optimal design of two-stage anaerobic digestion, Wat. Res. Vol.35, No.17, pp.4247-425148.W. C. Hu, K. Thayanithy and C. F. Forster, 2002, A kinetic study of the anaerobic digestion of ice-cream wastewater, Process Biochemistry, Vol. 37, pp.965-97149.Yehuda Miron, Grietje Zeeman, Jules B. Van Lier and Gatze Lettinga, 2000, The role of sludge retention time in the hydrolysis and acidification of lipids, carbonhydrates and proteins during digestion of primary sludge in CSTR system, Wat. Res., Vol.34, No.5, pp.1705-171350.楊英俊, 1993, 生物化學工程學, 第三版, pp120-124, 142-14351.樊國恕、賴俊吉、張益華、郭才華,2000, 厭氧分解氫化反應動力行為,第十五屆廢棄物研討會52.林秋裕, 1997, 環境工程微生物學, 3th ,國彰出版社, pp. 155-16053.鄭幸雄、林秋裕、李季眉、曾怡禛、劉文佐、林明瑞、林信一、陳錫添、陳幸德, 2001,厭氧生物產氫機制及程序控制之技術研發概論, 生質能源研究發展成果研討會
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊