跳到主要內容

臺灣博碩士論文加值系統

(3.236.225.157) 您好!臺灣時間:2022/08/16 00:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱俊昌
研究生(外文):Chun-Chang Chu
論文名稱:邏輯化簡法應用於雙位準影像處理之研究
論文名稱(外文):Bi-Level Image Representation and Downsampling Based on Logic Minimization
指導教授:魏清煌
指導教授(外文):Ching-Huang Wei
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:電腦與通訊工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:80
中文關鍵詞:影像表示法數碼集合表示法影像降取樣
外文關鍵詞:image representationset-of-codesimage downsampling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

在數位影像處理的相關領域中,影像表示法是一個很重要的課題,廣泛被運用在影像辨認,電腦繪圖及影像壓縮等方面。數位影像一般可以三種方式表示:樹狀結構、數碼字串與數碼集合。此三種表示法相較之下,數碼集合表示法的資料量較少,並且可以有效率的運用在影像處理的演算法。本研究主要目的在於發展運算速度快,又能產生最少數碼資料的資料表示法。
在前人提出的相關研究論文中,產生代表影像的數碼集合有三種方法:線性四元樹演算法、內插式線性二元樹演算法、布林化簡函數演算法。前兩個演算法產生數碼集合的運算速度較快,但是數碼資料量較多,浪費儲存空間。而最後一個演算法則可以產生最少的數碼資料量,需要的儲存空間較少,缺點是運算速度較慢。我們綜合前述三種方法的優點,提出新的演算法。實驗證明新的演算法可以產生最少的數碼資料量,並且大幅降低運算時間。另外我們採用影像切割的技術作為前處理,可以將運算效能更進一步提昇。
最後,以數碼集合為基礎,我們提出影像的降取樣之影像表示法的轉換技術。我們可以選擇產生較佳影像品質的轉換演算法,或者犧牲少許的影像品質,獲得較快的運算速度的轉換演算法。


In the related fields of digital image processing, image representation is a very important issue. It is widely performed in pattern recognition, computer graphics, and image compression. Digital images may be represented as a tree structure, strings, or set-of-codes. The set-of-codes representation generates the fewest data as compared with the others, and it can be effectively manipulated by the image processing algorithms. The purpose of our study is to develop two image representation algorithms with quicker operation speed and fewer codes.
Many set-of-codes techniques have been devised and can be classified into three categories: linear quadtree, interpolation-based bintree, and boolean switching function. The linear tree structure has faster operation speed, but it has more data of set-of-codes. However the boolean function may generate fewer data, but it has slower operation speed. Our proposed algorithm of image representation has faster operation speed and fewer data of set-of-codes. Experiments show that the improved methods have outstanding effect in saving storage space and reducing operation time. Besides, we apply image partition technique to further improve the performance.
Finally, we devise the transformation of image representation based on set-of-codes when the image is downsampled. We can choose proper algorithms to acquire better image quality or quicker operation speed at the sacrifice of little image quality.


Chapter 1 Introduction 1
1.1Motivation 1
1.2Related researches 3
1.3Thesis organizations 4
Chapter 2 Region-Based Representation of Bi-level Image 6
2.1Introduction 6
2.2Tree-structured representation 7
2.2.1Quadtree 7
2.2.2Binary tree 9
2.3Set-of-codes Techniques 10
2.3.1Linear quadtree representation 12
2.3.2Interpolation-based bintree 13
2.3.3Boolean switching function 15
Chapter 3 Image Processing Based on Logic Minimization 22
3.1Introduction 22
3.2Enhanced boolean function-based encoding 24
3.2.1Block decomposition 24
3.2.1.1Quadtree-type 25
3.2.1.2Bintree-type 25
3.2.1.3Hybrid-type 28
3.2.2Symbol string encoding 29
3.2.2.1Binary code of decimal 30
3.2.2.2Gray code 31
3.2.3Symbol string minimization 34
3.3Image partition 36
3.4Image compression 38
3.5Downsampling 40
Chapter 4 Simulation Results and Comparisons 44
4.1Introduction 44
4.2Enhanced boolean function-based encoding 45
4.3Image partition 54
4.4Image compression 60
4.5Downsampling 60
Chapter 5 Conclusions and Future Studies 74
5.1Conclusions 74
5.2Future Studies 75
References 76
Vita 80


[1] H. Samet, Applications of Spatial Data Structures. New York, NY: Addison Wesley, 1990.[2] H. Samet, The Design and Analysis Spatial Data Structures. New York, NY: Addison Wesley, 1990.[3] I. Gargantini, “An effective way to represent quadtrees,” Communications of the ACM, vol. 25, no. 12, pp. 905-910, Dec. 1982.[4] M. A. Ouksel and A. Yaagoub, “The interpolation-based bintree and encoding of binary images,” CVGIP: Graphical Models and Image Processing, vol. 54, no. 1, pp. 75-81, Jan. 1992.[5] D. Sarkar, “Boolean function-based approach for encoding of binary images,” Pattern Recognition Letters, vol. 17, pp. 839-848, 1996.[6] J. Augustine, W. Feng, A. Makur, and J. Jacon, “Switching theoretic approach to image compression,” Signal Processing, vol. 44, pp. 243-246, 1995.[7] I. Gargantini, “Translation, rotation, and superposition of linear quadtrees,” International Journal of Man-Machine Studies, vol. 18, no. 3, pp. 253-263, 1983.[8] G. Schrack and I. Gargantini, “Mirroring and rotating images in linear quadtree form with few machine instructions,” Image and Vision Computing, vol. 11, no. 2, pp. 112-118, 1993.[9] G. Schrack, “Finding neighbors of equal size in linear quadtrees and octrees in constant Time,” CVGIP:Image Understanding, vol. 55, no. 3, pp. 221-230, May. 1992.[10] D. Sarkar and N. Gupta, “Operations on binary images represented by interpolation based bintrees,” Pattern Recognition Letters, vol. 20, pp. 395-403, 1999.[11] K. L. Chung and J. G. Wu, “Fast implementations for mirroring and rotating bincode-based images,” Pattern Recognition, vol. 31, no. 12, pp. 1961-1967, 1998.[12] K. L. Chung and C. Y. Huang, “Finding neighbors on bincode-based images in O(nloglogn) time,” Pattern Recognition Letters, vol. 17, pp. 1117-1124, 1996.[13] C. Y. Huang and K. L. Chung, “Faster neighbor finding on images represented by bincodes,” Pattern Recognition, vol. 29, no. 9, pp. 1507-1518, 1996.[14] C. Y. Huang and K. L. Chung, “Fast operations on binary images using interpolation-based bintrees,” Pattern Recognition, vol. 28, no. 3, pp. 409-420, 1995.[15] J. G. Wu and K. L. Chung, “A new binary image representation: logicodes,” Journal of Visual Communication and Image Representation, vol. 8, no. 3, pp. 291-298, Sept. 1997.[16] J. G. Wu and K. L. Chung, “A modified image representation for bincodes and its manipulations,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 14, no. 3, pp. 389-406, 2000.[17] D. Sarkar, “Operations on binary images encoded as minimized boolean fuctions,” Pattern Recognition Letters, vol. 18, pp. 455-463, 1997.[18] D. Sarkar, S. Banerjee, and S. Chattopadhyay, “Translation and rotation of binary images encoded as minimized boolean fuctions,” Pattern Recognition Letters, vol. 18, pp. 157-163, 1997.[19] J. Augustine, W. Feng, and J. Jacob, “Logic minimization based approach for compressing image data,” Proc. 8th International Conference on VLSI Design, New Delhi, India, Jan. 1995, pp. 225-228.[20] D. Sarkar and P. K. Das, “Generalized approach for finding boundary codes from region representation of set-of-codes type,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 14, no. 8, pp. 1039-1052, 2000.[21] C. R. Dyer, A. Rosenfeld, and H. Samet, “Region representation: boundary codes from quadtrees,” Communications of the ACM, vol. 23, no. 3, pp. 171-179, Mar. 1980.[22] H. Samet, “Region representation: quadtrees from boundary codes,” Communications of the ACM, vol. 23, no. 3, pp. 163-170, Mar. 1980.[23] J. H. Moon, G. H. Park, S. M. Chun, and S. R. Choi, “Shape-adative region partitioning method for shape-assisted block-based texture coding,” IEEE Trans. Circuits and Systems for Video Technology, vol. 7, no. 1, pp. 240-246, Feb. 1997.[24] P. C. McGeer, J. V. Sanghavi, and R. K. Brayton, “ESPRESSO-SIGNATURE: A new exact minimizer for logic functions,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 1, no. 4, pp. 432-440, Dec. 1993.[25] C. Y. Huang and K. L. Chang, “Transformations between bincodes and the df-expression,” Comput. & Graphics, vol. 19, no. 4, pp. 601-610, 1995.[26] Y. H. Tsai and K. L. Chang, “Region-filling algorithm on bincode-based contour and its implementation,” Comput. & Graphics, vol. 24, pp. 529-537, 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top