跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/15 08:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:汪傳政
研究生(外文):Chuan-Cheng Wang
論文名稱:以隨機波動模型評價國內單一股票型認購權證之實證研究
論文名稱(外文):An Empirical Analysis for Pricing Single-Stock Warrants Under Stochastic Volatility Model
指導教授:葉仕國葉仕國引用關係絲文銘絲文銘引用關係
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:金融營運所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:113
中文關鍵詞:隨機變異隱含波動性認購權證
外文關鍵詞:Stochastic VolatilityImplied VolatilityWarrants
相關次數:
  • 被引用被引用:9
  • 點閱點閱:411
  • 評分評分:
  • 下載下載:129
  • 收藏至我的研究室書目清單書目收藏:4
經由許多實證研究後發現,Black-Scholes(BS) 歐式選擇權評價模型在不同的價值(Moneyness)與存續期間(Maturity)下,則會產生具規律性的偏離,而可能解釋因素,即為標的股票報酬率的波動性是會隨時間變動而改變的。另由自我相關條件異質變異(Autoregressive Conditional Heteroscedasticity,ARCH),或是一般化自我相關條件異質變異(Generalized Autoregressive Conditional Heteroscedasticity,GARCH)的文獻中,亦清楚地指出,認購權證的隱含波動性會隨著時間變動而改變,所以,本研究修正了標的股票價格報酬率的波動性為一常數之假設,應用Heston(1993)所推導出的歐式選擇權模型,作為認購權證之評價模式,對於國內的認購權證進行評價,以作為業界於定價、避險和投資大眾在投資認購權證時評估之新參考。本研究的結果可以發現,當認購權證的隱含波動性會隨著時間變動而改變下,明顯的改進了,用Black-Scholes選擇權評價模型對國內單一股票型認購權證之評價。同時發現,標的資產的報酬率及變異數之間呈現正相關性。但是,於衡量動態避險績效時,結果卻未獲致一明確結論。
Numerous empirical studies have found that the Black-Scholes Model results in systematic biases across moneyness and maturity. One possible explanation is that volatility of the underlying asset return is not constant over time. The autoregressive conditional heteroscedasticity or generalized The autoregressive conditional heteroscedasticity (ARCH/GARCH) literature and empirical studies of implied volatility also clearly show that volatility changes over time. This study modifies the assumption of volatility being constant. The purpose of this article using Heston''s (1993) stochastic volatility option pricing formula prices single-stock warrants being a reference of pricing, hedging and holding for the investors.The results of this research reveal the evidence of stochastic volatility is to improving the performance of the Black-Scholes model (1973) for pricing single-stock warrants. The results although show that the correlation between asset''s returns and volatility is positive. But, for measuring the performance of dynamic hedging, this study has not got any consistent conclusion.
中文摘要……………………….….………...…………………….…………………i
英文摘要………………………….………………….………...……………………ii
致謝…………………………………………………….………………………...…..iv
目錄………………………………………………...…………….……………….….v
表目錄………………………………..…………………………..………..…...…..vii
第壹章緒論…………………………………………………………….…….1
第貳章文獻回顧…………………………………………………………….3
第參章研究方法…………………………………………………………….6
第一節Black-Scholes模型……………………………………………………6
第二節Heston模型……………………………………………………..…….9
第三節估計方法…………………………………………………………….14
第肆章資料與研究結果………………………………………………….15
第一節樣本資料…………………………………………………………….15
第二節估計結果…………………………………………………………….17
第三節樣本外之評價偏誤………………………………………………….19
第四節動態避險之績效………………………………………………….…30
第伍章結論………………………………………………………………....35
參考文獻……………………………………..…………………………...…………37
附錄參數估計與評價結果……………………………….…….………41
1.Bailey, W., & Stulz, R. (1989). "The pricing of stock index options in a general equilibrium model." Journal of Financial and Quantitative Analysis, Vol. 24, pp. 1-12.2.Bakshi, G. S., Cao, C., & Chen, Z. W. (1997). "Empirical performance of alternative option pricing models." Journal of Finance, Vol. 52, pp. 2003-2049.3.Bates, D. S. (1996). "Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options." Review of Financial Studies, Vol. 9, pp. 69-108.4.Black, F., & Scholes, M. (1973). "The pricing of options and corporate liabilities." Journal of Political Economy, Vol. 81, pp. 637-659.5.Chesney, M., & Scott, L. (1989). "Pricing European currency options: A comparison of the modified Black-Scholes model and a random variance model." Journal of Financial and Quantitative Analysis, Vol. 24, pp. 267-284.6.Cox, J. C., Ingersoll, J. E., & Ross, S. A. (1985). "A theory of the term structure of interest rates." Econometrica, Vol. 53, pp. 385-407.7.Day, T. E., & Lewis, C. M. (1997). "Initial margin policy and stochastic volatility in the crude oil futures market." Review of Financial Studies, Vol. 10, pp. 303-332.8.Dumas, B., Fleming, J., & Whaley, R. E. (1998). "Implied volatility functions: Empirical tests." Journal of Finance, Vol. 63, pp. 2059-2106.9.Gemmil, G. (1996). "Did option traders anticipate the crash-Evidence from volatility smiles in the UK with US comparisons." Journal of Futures Markets, Vol. 16, pp. 881-897.10.Guo, D. (1998). "The risk premium of volatility implicit in currency options." Journal of Business & Economic Statistics, Vol. 16, pp. 498-507.11.Hull, J. (1993). "Options, Futures and Other Derivative Securities." Prentice-Hall, Englewood Cliffs, NJ.12.Heston, S. L. (1993). "A closed-form solution for options with stochastic volatility with applications to bond and currency options." Review of Financial Studies, Vol. 6, pp. 327-343.13.Hull, L., & White, A. (1987). "The pricing of options with stochastic volatilities." Journal of Finance, Vol. 42, pp. 281-300.14.Kon, S. (1984). "Models of stock returns-a comparison." Journal of Finance, Vol. 39, pp. 147-165.15.Melino, A., & Turnbull, S. (1990). "Pricing of foreign currency options with stochastic volatility." Journal of Econometrics, Vol. 45, pp. 239-265.16.Melino, A., & Turnbull, S. (1991). "The pricing of foreign currency options." Canadian Journal of Econometrics, Vol. 24, pp. 251-281.17.Merville, L. J., & Pieptea, D. R. (1989). "Stock price volatility, mean-reverting diffusion, and noise." Journal of Financial Economics, Vol. 24, pp. 193-214.18.Nandi, S. (1998). "How important is the correlation between returns and volatility in stochastic volatility model? Empirical evidence from pricing and hedging in the S&P 500 index options market." Journal of Banking and Finance, Vol. 22, pp. 589-610.19.Poterba, J. M., & Summers, L. H., (1996). "The persistence of volatility and stock market fluctuations." Economic Review, Vol. 76, pp. 1142-1151.20.Rubinstein, M. (1985). "Nonparametric tests of alternative option pricing models using all reported traders and quotes on the 30 most active CBOE options classes from August 23, 1976 through August 31, 1978." Journal of Finance, Vol. 40, pp. 455-480.21.Scott, L. O. (1987). "Option pricing when the variance changes randomly: Theory, estimators, and applications." Journal of Finance and Quantitative Analysis, Vol. 22, pp. 419-438.22.Stein, E., & Stein, J. (1991). "Stock price distributions with stochastic volatility." Review of Financial Studies, Vol. 4, pp. 727-752.23.Taylor, S. J. (1986). "Modelling financial time series." Chichester, England: Wiley.24.Wiggins, J. B. (1987). "Option values under stochastic volatility-Teory and empirical estimates." Journal of Financial Economics, Vol. 19, pp. 351-372.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top