跳到主要內容

臺灣博碩士論文加值系統

(3.235.140.84) 您好!臺灣時間:2022/08/13 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳永興
研究生(外文):Yung-hsin Chen
論文名稱:建構RFID監控技術應用在物流中心之風險分析
論文名稱(外文):RISK ANALYSIS ON RFID MONITORING TECHONOLOGY APPLIED TO DISTRIBUTION CENTERS
指導教授:黃山琿黃山琿引用關係
指導教授(外文):Shan-huen Huang
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:運輸倉儲營運所
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2004
畢業學年度:90
語文別:中文
論文頁數:116
中文關鍵詞:模糊理論自動射頻辨識技術失效模式與效應分析
外文關鍵詞:FUZZEYRFIDFMEA
相關次數:
  • 被引用被引用:106
  • 點閱點閱:4835
  • 評分評分:
  • 下載下載:1639
  • 收藏至我的研究室書目清單書目收藏:33
全球運籌中心的推動與發展是台灣經貿轉型的重要的課題與任務。因應國際加工與產銷體系的逐漸形成與國內實質營運環境的改變,國際貨物在台灣島內進行貨物轉運、加工或深層製造之需要日與遽增,以爭取國際貨物流通價值。貨物流動速度或是降低流通成本,成為國內國際運輸的重要發展課題。製造商為求取額外利潤而利用提高產能、改善製程等方式來降低生產成本,然而在完全競爭市場中,資本密集或是勞力密集的生產技術皆是所有製造商必須具備的基本條件,因此近年來物流服務成為另一個具有改善空間的行業,如何利用良好的物流管理技術及手段,來達成降低成本增進效率的目標,從中獲得在生產管理及行銷管理之外的利潤。
因此本研究目的是在物流中心引進RFID貨物監控系統之後,來建構整體物流中心之監控貨物的風險。利用失效與效應模式(FMEA)風險分析方法,建構出整體物流中心在使用新的監控系統之後會產生哪一些風險,經過了與RFID的設計者討論之後,可依據導致失效的原因分為三個構面分別為人為因素、機件因素、環境因素等;共有十一個失效模式,再經過了六家的使用廠商與三家的監控設計者,25位受訪者的主觀評估,依據風險優先值排列出風險大小,其中以電子標籤超出讀碼機的接收範圍的風險為最大,佔整體風險評估的30.77%,其次才是棧板通過讀碼機速度過快,占有19.23%,而最小的風險失效模式是監控人員的疏忽,才占1.92%。因為傳統的風險評估方法-RPN中,對於決定因子的評估是明確且主觀性的評估方式,而本研究試著利用模糊理論,改善對於主觀性的評估方式,其研究結果發現,電子標籤超出可接收範圍與電子標籤通過速度過快為第一優先注意的風險,而差異最大的是第五名之後的失效風險模式與傳統RPN值所排序出的失效風險不一樣,分析結果是因為五到十一名的失效模式佔整體監控系統的風險並不是很大,所以兩種方法的排序在後段有很大的差異。
依據風險失效模式的發生在監控系統的元件部位,又可分為資訊上的讀取錯誤、資訊的傳輸錯誤與資訊的處理錯誤等三個構面,依據這三個構面,加裝RFID監控系統的功能,以防止失效風險發生。
依據了風險管理成本,針對每個失效風險模式提出最有效的改善方案,而對改善方案作每年所花的成本,能有效的降低風險發生的機率作一系列的比較;研究結果顯示,在引進RFID監控系統之後,其系統在加裝了棧板編碼、監視器、警示燈、電子看板、增加網路頻寬與增加電腦容量六個改善方案,能有效的47.82%的風險值,其風險的發生率從未引進RFID監控系統的5.38×10-6~6.31×10-6下降到2.80×10-6~3.29×10-6之間機率,換句話說,二千萬件貨物在RFID監控系統之下,發生貨物遺失只有64件貨物。
Development and promotion of the global operation center are very important task as well as challenge for Taiwan’s economical transformation. Following the changing of domestic operation environment and the emerging of international system of manufacturing and marketing, there are more and more cases that international goods should be transported, processed, and profound manufactured on Taiwan in order to increase the value in international goods traffic. Speeding up and reducing costs of goods traffic has become critical problems for domestic and international transportations. Manufacturers pursue more margins by increasing production capacity, improving the process, and reducing costs. However, their production technology must be qualified for highly concentration of capital as well as labor power in this fully competing market. Therefore, logistic service has become a potential business. An enterpriser should know how to achieve the goal of reducing costs & enhancing efficiency by the mean of proper managing technique on logistics and then gain profits besides production and marketing management.

Therefore, the purpose of this research is to construct the risk mode of the goods monitoring in through carriage in case of that the distribution centers introduced the RFID monitor and control system. Utilizing the method of invalidation and FMEA risk analysis, we can find out which kind of risk may be incurred after the distribution centers use the new system. After discussing with the designers of RFID, we could understand that the reasons for causing invalidation belong to three aspects: artificial, mechanical, and environmental. And there are 11 invalid modes. The researcher put the modes in order according to the risk priority made by 25 users’ subjective evaluations after interviewing 6 companies using the monitor and control system and 3 who design it. It reveals that the top one risk is that the smart labels go beyond the receiving range of the readers. It occupies 30.77% of the whole risk evaluations. The second one is that the pallets pass the readers too fast and it occupies 19.23%. The least invalid mode is the monitoring staff’s faults and occupies only 1.92%.

In the traditional method of risk evaluation—RPN, the deciding factors are evaluated explicitly and subjectively. But in this study, the researcher tried to adopt the fuzzy theory to improve the subjectivity in the evaluations. The result shows us that the digital labels go beyond the receiving range of the readers or pass the readers too fast are the most important risks. However, from 5th to 11th invalid mode for the risk priority are highly different to those that arranged by the traditional RPN method. The researcher analyzed the difference and found it is because that the 5th to 11th modes occupy lesser percentage of the risk evaluations in the whole monitor and control system.

According to the component parts of the monitor and control system occurring invalidation risk, those invalid modes could be divided into three aspects: information reading errors, information transmitting errors, and information operating errors. Installing the RFID monitor and control system in consideration of the three aspects could prevent occurrence of invalidation risks.

The researcher presents improving resolutions for each invalid mode according to cost theories of risk management and makes a serial of comparisons of the relations between risk probability letdown and annual budget for each resolution. The result reveals that corporations could cut 47.82% risk value down efficiently by introducing RFID monitor and control system and adopting the following 6 resolutions: installing more pallet codes, monitors, alarm lights, network-bandwidths, and computer capacity. The risk probability decreased from 5.38×10-6~6.31×10-6 to 2.80×10-6~3.29×10-6. In other words, under the RFID monitor and control system, only 64 units of goods may be lost among 20,000,000 units.
中文摘要 1
ABSTRACT 3
誌 謝 5
目 錄 6
圖 目 錄 8
表 目 錄 9
第一章 緒 論 11
1.1研究背景與動機 11
1.2研究目的與內容 12
1.3研究範圍與限制 13
1.4研究方法 14
1.5研究架構與流程 14
第二章 文獻回顧 17
2.1何謂RFID 17
2.1.1國內外運用RFID的技術與起源 20
2.1.2與傳統方式的標籤的比較 21
2.1.3其他追蹤技術之相關內容 22
2.2管理風險的概念與討論 23
2.2.1風險的意義 24
2.2.2建構有關風險分析技術 24
2.3 FMEA的效應分析 25
2.3.1 FMEA之起源與發展 26
2.3.2設計FMEA與製程FMEA 29
2.3.3 FMEA之目的 31
2.3.4 FMEA之作業程序 31
2.3.5 FMEA之評價與決策 33
2.4 模糊理論(FUZZY THEORY) 37
2.4.1模糊集合與模糊數 37
2.4.2 解模糊化的方法 39
2.5模糊多準則決策 44
2.5.1 TOPSIS評估方法 45
2.5.2模糊度 45
2.5.3 TOPSIS分析步驟 47
第三章 研究方法 49
3.1物流中心的問題分析 49
3.1.1物流中心FMEA的分析架構 50
3.1.2 RFID監控系統分析與範圍 53
3.2 風險失效模式 57
3.2.1傳統FMEA之風險評估模式 57
3.2.2模糊語意 59
3.2.3模糊理論解失效模數之參數 60
3.2.4利用TOPSIS方法評估FMEA的RPN值 63
3.3風險成本衡量分析 66
3.3.1風險成本的概念 66
3.3.2 RFID監控系統利用風險成本分析 67
3.4問卷的設計與抽樣 69
第四章 例證分析 71
4.1定義風險失效模式 71
4.2失效模式風險評價 76
4.2.1信度分析 76
4.2.2基本資料分析 80
4.2.3 建立FMEA風險評估分析表 84
4.2.4利用模糊理論建構FMEA風險分析 89
4.2.4比較傳統RPN與模糊理論 94
4.3風險成本的衡量 96
4.4小結 99
第五章 結 論 101
文獻參考 104
附錄一 問卷資料 110
(1)Antonio Spcipioni, Giovanni Saccarola, Angela Centazzo & Francesca
Arena, (2002), “FMEA methodology design, implementation and integration
with HACCP system in a food company,” Food Control, 13, pp495-501.
(2)Anand Pillay & Jin Wang, (2003), “Modified failure mode and effect
analysis using approximate reasoning”, Reliability Engineering and System
Safety, 79, pp.69-85.
(3)Bellenman, R.E. and Zadeh, L.A., (1970), “Decision Making in a Fuzzy
Environment”, Management Science, 17(4), pp.141-164.
(4)Bowles, J.B. and Pleaez, E., (1995), “Fuzzy Logic Prioritization of
Failures in A System Failure Mode Effects and Criticality Analysis”,
Reliability Engineering and System Safey, vol.50, pp202-213,
(5)Chrysler, Ford, General Motots and Plexus QS-9000 Training System, (2000),
“Potential Failure mode and Effects Analysis(FMEA)”, Plexus Corporation.
(6)Dale & Shaw, (1990), “Failure Mode and Effects Analysis In The U. K. Motor
Industry: A State-of-the-art Study”, Quality And Reliability Engineering
International, Vol.6, pp.179-188.
(7)Delgado M., Herrera F., Herrera-Viedma E., and Martinez L., (1998),
“Combining numerical and linguistic information in group decision making”,
Journal of Information Sciencesm, Vol.107, pp.177-194.
(8)Ford Motor Company, (1988), “Potential Failure Mode and Effect Analysis-
Instruction Manual”, Ford Motor Company.
(9)Gilchrist, W., (1993) “Modelling Failure Modes and Effect Analysis”,
International Journal of Quality and Reliability Management, vol. 10, no.5,
pp16-23.
(10)G. Dhillon & J.Backhouse(1996), “Risks in the Use of Information
Technology Within Organizations”, International Journal of
Information Management, Vol. 16, No. 1, pp. 65-74.
(11)Hawkins & Woollon, (1998), “Failure modes and effects analysis of complex
engineering system using functional models”, Artificial Intelligence in
Engineering, 12, pp375-397.
(12)Hwang, C.L. and Yoon, (1996), “Multiple Attribute Decision Making:
Methods and Application”, Fuzzy sets and System, 79(3), pp.279-285.
(13)Jansen, M.B., and Erdus W., (1999), “Future developments on devices for
animal radio frequency identification”, Computer and electronics in
agriculture, No.24, pp.109-117.
(14)Jemmy F. Shapiro, 2001, “Modeling the Supply Chain”, DUXBURY THOMSON
LEARNING.
(15)Kerlinger, F.N. (1986), “Fundations of Behavioral Researech”, 3rd ed.,
Chicago: Holt, Rinchart and Winston, Inc.
(16)Lawshe, (1985), “Inference from Personnel Tests and Their Validity “,
Journal of Applied Psychology, 70, pp.77-87.
(17)MIL-STD-1629A, (1980), “Procedures for performing a Failure Mode Effects
and Criticality Analysis (FMECA), DoD Washington.
(18)Ming-Chih Tsai, (2000), “Developing public transport safety management
and safety regulation by using risk management skills”, Transportation
Planning Journal, Vol.29, No.1, pp.181-212.
(19)Permala, A., and Scholliers J., (2002), “New Technologies for multimodal
tracking and control,” 9th World Congress on ITS, Chicago.
(20)Permala & Scholliers, (2000), “Automated identification of transport
units in complex transport chains, Finnish test results”, 7th World
Congress on Intelligent Transport System, 6-9 November 2000, Turin, Italy.
(21)QS 9000, (1995), “Potential Failure Mode and Effect Analysis (FMEA)
Reference Manual”, (SAEJ-1739), Second edition, Society Automotive
Engineers.
(22)Rudiger Wirth , Bernd Berthold , Anita Kramer & Gerhard Peter, (1996),
“Knowledge-based Support of System Analysis for the Analysis of Failure
Modes and Effect”, Engng Applic. Artif. Intell. Vol.9, No.3, pp.219-229.
(23)Stamatics, (1995), “Failure Mode and Effect Analysis from Theory to
Execution”, ASQC Quality Press Milwaukee.
(24)Zadeh, L.A., (1965), “Fuzzy Sets”, Information and control, Vol 8,
pp388-353.
(25)Zeleny, M., (1974), “A Concept of Compromise Solutions and the Method of
the Displaced Ideal”, Computers and Operations Research, pp.479-496.
(26)“Five straightforward steps”, Members of The Association of Automatic
Identification And Data Capture Technologies.
(27)“UNDERSTANDING RFID FOR LIBERARIES”, TAGSYS 2002.
(28)陳光榮、陳文蓉(民國88年),「流通業的發展對台灣經濟影響之分析」,經濟情勢季
刊,明果88年6月,第5期一卷。
(29)陳啟斌、林進才、吳進成、黃淑敏(民國87年),「簡易銀行授信避險決策分析」,
1998年灰色系統理論與應用研討會論文集,PP405-417,1998。
(30)許隆昌、羅應浮、魏邱建(民國90年),「生產系統預防保養之失效模式效應與關鍵分
析」,真理大學第二屆管理創新與實務研討會。
(31)許盛堡(民國91年),「建構一個QFD與FMEA之整合架構」,元智大學工業工程與管理學
系碩士論文。
(32)區奕勤、张先迪(民國80年),「模糊數學原理及應用」。
(33)曹健齡、楊義明(民國86年),「失效模式與效應分析的作業方式」,品質管制月刊,
PP55-59。
(34)張清亮、蔡志弘(民國89年),「失效模式與效應分析的評價方法」,Journal of the
Chinese Institute of Industrial Engineers, Vol. 17,No.1,PP51-64。
(35)楊朝鈞(民國92年),「建構航空站空側風險架構分析之研究FMEA之應用」,成功大學
交通管理科學研究所碩士論文。
(36)盧昆宏(民國88),「利用失效模式與效應分析提昇壽險業務之可靠度」,中華民國品
質學會第五屆品質管理研討會論文集。
(37)盧昆宏(民國88年),「資源回收系統之失效模式與效應分析」,中華民國品質學會第
五屆品質管理研討會論文集。
(38)盧昆宏(民國87年),「利用FMEA提昇事務流程之可靠度-個案研究」,邁向二十一世
紀的品質與管理技術應用研討會論文集,PP355-368。
(39)謝財源、張忠孝、鍾清章、邱柏松、王英一等譯(民國89年),”可靠度管理手冊”,
中華民國品質管制學會,pp.195-235。
(40)黃台生、張應輝(民國89年),台鐵營運安全風險之研究,國立交通帶學交通運輸研究
所碩士論文。
(41)蔡明志、陳基賢(民國92年),運用車輛定位系統簡化國際貨物通關之風險評估-以高雄
港為例,國立高雄第一科技大學運輸與倉儲研究所碩士論文。
(42)經濟部商業司(民國90年),2001中華民國物流年鑑。
(43)經濟部商業司(民國92年),九十二年度物流及流通應用整合發展計畫成果發表會。
(44)中華民國商品條碼策進會,第二屆全球商業共同資訊標準應用研討會。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top