跳到主要內容

臺灣博碩士論文加值系統

(44.197.230.180) 您好!臺灣時間:2022/08/20 14:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何文獻
研究生(外文):Wen-Hsien Ho
論文名稱:灰色模糊自航PID控制器之強健多目標最佳設計
論文名稱(外文):Robust Multiple Objectives Optimization of Grey-Fuzzy PID Controller for Autopilot
指導教授:周至宏周至宏引用關係俞克維俞克維引用關係
指導教授(外文):Jyh-Horng ChouKer-Wei Yu
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:機械與自動化工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:54
中文關鍵詞:灰色模糊PID控制器自航器強健多目標最佳化
外文關鍵詞:grey-fuzzy PID controllerautopilotrobust multiple objectives optimization
相關次數:
  • 被引用被引用:2
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

本論文將提出一灰色模糊PID控制程序應用於船舶自動導航控制系統。灰色模糊PID控制程序包括兩個部分:灰色預測器及模糊PID控制器。灰色模糊PID控制器和模糊PID控制器之間最大的不同是,灰色模糊PID控制器是使用灰色模型來預測未來的狀態,因此,有預先控制的優點。在實際的工程問題上,我們經常面對多個目標最佳化的問題,因此,為了經由有系統的推理來搜尋最佳的控制參數,以取代耗費時間的試誤法,強健多目標最佳方法被應用在本論文中,來搜尋結合灰色預測器及模糊PID控制器兩者的最佳控制參數(也就是灰色預測器的取樣數目,模糊PID控制器的量化因子,及S形函數的常數),確保控制性能的穩定。強健多目標最佳方法結合多目標最佳化觀念及靜態田口方法,透過直交表實驗配置的幫助,並使用變異數分析的結果來量化設計參數的重要性,可獲得一Pareto最佳強健設計解集合。所完成的航向保持自動導航電腦模擬結果證實強健多目標最佳灰色模糊PID控制程序的有效性,而且顯示強健多目標最佳灰色模糊PID控制程序優於現有的模糊PID控制程序。


In this thesis, the grey-fuzzy gain scheduling (GFGS) PID control scheme is proposed for autopilot system. The GFGS PID control scheme consists of two parts: the grey predictor and the fuzzy gain scheduling (FGS) PID controller. The difference between GFGS PID controller and FGS PID controller is that the GFGS PID controller is designed based on the future state, which is predicted by the grey model. Thus there will be the advantage of prior control. In real engineering problems, we usually face the multiple-objectives optimization problems. Therefore, in order to search for the optimal control parameters by way of systematic reasoning instead of the time-consuming trial-and-error procedure. An optimal combined method, i.e., robust multi-criteria optimization (RMCO) approach, is applied in this thesis to search for the optimal control parameters of both the grey predictor and the fuzzy gain scheduling PID controller (i.e., the sample size of the grey predictor, the scaling factors of the fuzzy PID controller and factors of sigmoid membership functions) for ensuring both stability and control performances. RMCO approach integrates multi-objective optimization concepts with statistical Taguchi method and obtains a Pareto-optimal robust design solution set with the aid of design of experiment set-ups, which uses analysis of variance (ANOVA) results to quantify relative significance of design factors. Computer simulations of the course-keeping autopilot are performed to verify the effectiveness of the RMCO-GFGS PID control scheme and to show that the GFGS PID control scheme is superior to the existing FGS PID control scheme.


CONTENTS

摘要i
ABSTRACTii
ACKNOWLEDGEMENTSiii
CONTENTSiv
LIST OF TABLESvi
LIST OF FIGURESvii
NOMENCLATUREviii
CHAPTER 1 INTRODUCTION1
1.1 Motivation1
1.2 Literature Survey2
1.3 Brief Sketch of the Contents3
CHAPTER 2 SYSTEM DESCRIPTIONS5
2.1 Ship Course-Keeping Handling Control5
2.2 Robust Multiple-Objectives Optimization Grey-Fuzzy Gain Scheduling PID Controller8
CHAPTER 3 ROBUST MULTI-CRITERIA OPTIMIZATION APPROACH19
3.1 RMCO Approach Procedure19
3.2 Orthogonal Arrays (OAs)21
3.3 Signal-to-Noise Ratios (SNR)22
3.4 Analysis of Variance (ANOVA)24
CHAPTER 4 FUZZY CONTROL THEORY26
4.1 Fuzzifier28
4.2 Fuzzy Knowledge Base29
4.3 Inference Engine30
4.4 Defuzzifier31
CHAPTER 5 GREY SYSTEM THEORY33
5.1 The Grey Model - GM (1,1) Model34
5.2 Grey Prediction Control37
CHAPTER 6 PARAMETER DESIGN AND COMPUTER SIMULATIONS40
CHAPTER 7 CONCLUSIONS AND DISCUSSIONS50
REFERENCE51


[1]Chou, J. H., Chen, S. H., and Lee, F. Z., 1998, “Grey-Fuzzy Control for Active Suspension Design”, International Journal of Vehicle Design, Vol.19, pp.65-77.[2]Chou, J. H., Chen, S. H., and Li, J. J., 2000, “Application of the Taguchi-Genetic Method to Design an Optimal Grey-Fuzzy Controller of a Constant Turning Force System”, Journal of Materials Processing Technology, Vol.105, pp.333-343.[3]Deng, J. L., 1982, “Control Problems of Grey Systems”, Systems and Control Letters, Vol.5, pp.288-294.[4]Deng, J. L., 1985, Grey System Control, Huazhong University of Science and Technology Press, Wuhan.[5]Deng, J. L., 1989, “Introduction to Grey System Theory”, The Journal of Grey System, Vol.1, pp.1-24.[6]Deng, J. L., 1989, “Properties of Multivariable Grey Model GM (1,N)”, The Journal of Grey System, Vol.1, pp.25-41.[7]Deng, J. L., 1990, “Modeling for Grey Series”, The Journal of Grey System, Vol.2, pp.217-232.[8]Fossen, T. I., 1994, Guidance and Control of Ocean Vehicles, John Wiley & Sons, New York.[9]Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, California.[10]Hsieh, C. H., Chou, J. H., and Wu, Y. J., 2001, “Optimal Grey-Fuzzy Gain-Scheduler Design Using Taguchi-HGA Method”, Journal of Intelligent and Robotic Systems, Vol.32, pp.321-345.[11]Huang, Y. P., and Huang, C. H., 1997, “Real-Valued Genetic Algorithms for Fuzzy Grey Prediction System”, Fuzzy Sets Systems, Vol.87, pp.265-276.[12]Huang, Y. P., and Yu, T. M., 1997, “The Hybrid Grey-Based Models for Temperature Prediction”, IEEE Transactions on Systems, Man, and Cybernetics, Vol.24, pp.284-292.[13]Klir, G. J., and Yuan, B., 1995, Fuzzy Sets and Fuzzy Logic Theory and Applications, Prentice-Hall, New Jersey.[14]Kunjur, A., and Krishnamurty, S., 1997, “A Robust Multi-Criteria Optimization Approach”, Mechanism and Machine Theory, Vol.32, pp.797-810.[15]Layne, R. J., and Passino, K. M., 1993, “Fuzzy Model Reference Learning Control for Cargo Ship Steering”, IEEE Control Systems, December, pp.23-34.[16]Lewis, E. V., 1989, Principles of Naval Architecture Second Revision, The Society of Naval Architects and Marine Engineers, New Jersey.[17]Liaw, S. C., Chung, H. Y., and Lee, C. J., 1997, “Grey Predictive Current Control for Induction Motor Drives by Space Voltage Vector PWM”, Proceeding of the 1997 Automatic Control Conference, Taiwan, pp.529-534.[18]Lin, S. H., 2000, A Study on Nonlinear Predictive Control System, Department of Mechanical Engineering, National Cheng Kung University, Taiwan, R.O.C., Ph.D Dissertation.[19]Mamdani, E. H., 1974, “Applications of Fuzzy Algorithms for Control of Simple Dynamic Plants”, Proceeding, IEEE, Vol.121, pp.1585-1588.[20]Park, S. H., 1996, Robust Design and Analysis for Quality Engineering, Chapman & Hall.[21]Passino, K. M., and Yurkovich, S., 1998, Fuzzy Control, Addison-Wesley, California.[22]Pedrycz, W., 1989, Fuzzy Control and Fuzzy Systems, John Wiley & Sons, New York.[23]Polkinghome, M. N., Roberts, G. N, Burns, R. S., and Winwood, D., 1995, “The Implementation of Fixed Rulebase Fuzzy Logic to the Control of Small Surfaces Ships”, Control Engineering, Vol.3, pp.321-328.[24]Ross, P. J., 1996, Taguchi Techniques for Quality Engineering, McGraw-Hill, New York.[25]Ross, T. J., 1995, Fuzzy Logic With Engineering Applications, McGraw-Hill, New York.[26]SOLAS, 2000, International Convention for the Safety of Life at Sea, Chapter V Safety of Navigation, Version 1, November 2000.[27]Sutton, R., and Towill, D. R., 1987, “Fuzzy Logic Models of the Control Behavior of a Helmsman Performing Course-Keeping and Course-Changing Tasks”, Proceeding of eighth Symposium on Ship Control Systems, Bath, U.K., pp.1.101-1.119.[28]Wang, L. X., 1997, A Course in Fuzzy Systems and Control, Prentice Hall, New Jersey.[29]Yu, K. W., Hwang, R. C., and Hsien, J. G., 1998, “Fuzzy PID Controller Gain Scheduling by Using Network Back-Propagation”, Proceedings of the International Conference on Neural Networks & Brain, Beijing, China, pp.142-145.[30]Yu, K. W., Hwang, R. C., and Hsien, J. G., 1999, “Automatic Ship Handling of Maritime Search Mission by Using Self-Tuning Fuzzy Gain Scheduling PD Controller”, Journal of Navigation, Vol.52, pp.378-387.[31]Yu, K. W., Hwang, R. C., and Hsien, J. G., 1999, “Model Reference Fuzzy Gain Scheduling PID Controller ”, Proceedings of the Eighteenth IASTED International Conference on Modelling, Identification, and Control, Innsbruck, Austria, pp.181-184.[32]Yu, K. W., 1999, Some Aspects of Intelligent Control in Vessel Systems, Department of Electrical Engineering, National Sun Yat-Sen University, Taiwan, R.O.C., Ph.D Dissertation.[33]Zadeh, L. A., 1965, “Fuzzy Set”, Information and Control, Vol.8, pp.338-353.[34]Zadeh, L. A., 1973, “Outline of a New Approach to the Analysis of Complex Systems and Decision Processes”, IEEE Transactions on Systems, Man, and Cybernetics, Vol.3, pp.28-44.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top