# 臺灣博碩士論文加值系統

(44.197.230.180) 您好！臺灣時間：2022/08/20 14:18

:::

### 詳目顯示

:

• 被引用:3
• 點閱:180
• 評分:
• 下載:0
• 書目收藏:0
 使用壓電致動器，精密定位已從微米降至奈米等級。彈簧/壓電耦合致動器的精密定位運動，可獲得高精密及大位移的能力。在本文中，將分別利用分佈參數系統(Distributed Parameter System)和集總參數系統(Lumped Parameter System)推導出，彈簧/壓電耦合致動器撞擊精密定位平檯的動態響應。而滑動檯的運動、打擊部與滑動檯之間的接觸力及由V型溝槽所造成的摩擦力，都將於本文中討論。比較實驗結果與數值解，將驗證本文提出的數學理論的正確性。
 The piezoelectric actuator (PA) has been used for precision positioning from micrometer down to nanometer scale. In this paper, a soft-mounted PA is designed with a low-stiffness spring element to achieve a high accuracy and large displacement in precision positioning motion. The motion of the sliding table, the contact force between the hammer and the sliding table, and the stick-slip frictional force caused by the grinded groove are investigated. The governing equations of the distributed and lumped parameter systems are formulated to obtain the dynamic responses, which agree well with the experimental results.
 1. Introduction-------------------------------------------12. Dynamic Modeling---------------------------------------32.1 The Physical Model------------------------------------32.2 The Distributed Parameter System----------------------32.2.1 The Kinetic Energy----------------------------------42.2.2 The Strain Energy-----------------------------------52.2.3 The Virtual Work------------------------------------52.2.4 The Hamilton’s Principle---------------------------62.2.5 The Contact Force-----------------------------------72.2.6 The Friction Force----------------------------------72.3 The Lumped Parameter System---------------------------82.3.1 Finite Element Formulation--------------------------92.3.2 The Special Case------------------------------------92.3.3 The Governing Equation-----------------------------102.3.4 The Contact and Non-Contact Configurations---------112.4 Discussion of Various Methods------------------------113. Dynamic Response--------------------------------------133.1 Experimental Results---------------------------------133.1.1 Experimental setup---------------------------------133.1.2 Step Response from the Experiment------------------133.2 Numerical Solutions----------------------------------143.2.1 Parameter Choosing---------------------------------143.2.2 Numerical Solutions--------------------------------153.3 Discussions------------------------------------------164. Conclusion--------------------------------------------18References-----------------------------------------------19Appendix A-----------------------------------------------23Appendix B-----------------------------------------------26
 1. Oiwa, T., and Matsunaga, T., 2000, “A study on Torsional Elastic Hinge,” Journal of the Japan Society for Precision Engineering, 66, pp. 955-959.2. Tsuda, N., Yamada, H., Ishida, F., Miyashita, M., and Yamaguchi, M., 1989, “Wide Range STM,” Journal of the Japan Society for Precision Engineering, 55, pp. 146-151.3. Okayama, S., Bando, H., Tokumoto, H., and Kajimura, K., 1985, “Piezoelectric Actuator for Scanning Tunneling Microscopy,” Japanese Journal of Applied Physics, 24, pp. 152-155.4. Scire, F. E., and Teague, E. C., 1978, “Piezodriven 50-mm Range Stage with Subnanometer Resolution,” Review of Scientific Instruments, 42, pp. 1735-1740.5. Chang, S. H., Tseng, C. K., and Chien, H. C., 1999, “An Ultra-precision XY Piezo-micropositioner-Part I: Design and Analysis,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 46, pp. 897-905.6. Chang, S. H., and Du, B. C., 1998, “A Precision Piezodriven Micropositioner Mechanism with Large Travel Range,” Review of Scientific Instruments, 69, pp. 1785-1791.7. Chang, S. H., and Li, S. C., 1999, “A High Resolution Long Travel Friction-Drive Micropositioner with Programmable Step Size,” Review of Scientific Instruments, 70, pp. 1-7.8. Burleigh Instruments, 1975, U.S. Patent: 3, 902, 084.9. Shamoto, E., and Moriwaki, T., 1997, “Development of a Walking Drive Ultraprecision Positioner,” Precision Engineering, 20, pp. 85-92.10. Ni, J., and Zhu, Z., 2000, “Design of a Linear Piezomotor with Ultra-High Stiffness and Nanoprecision,” IEEE/ASME Transactions on Mechatronics, 5, pp. 441-443.11. Higuchi, T., Watanabe, M., and Kudoh, K., 1988, “Precise Positioner Utilizing Rapid Deformations of a Piezo Electric Element,” Journal of the Japan Society for Precision Engineering, 54, pp. 75-80.12. Moriyama, S., Harasa, T., and Takanashi, A., 1985, “Precision X-Y Stage with a Piezo-Driven Fine-Table,” Journal of the Japan Society for Precision Engineering, 50, pp. 718-723.13. Kallio, P., Zhou, Q., Lind, M., and Koivo, H. N., 1998, “Position Control of a 3 DOF Piezohydraulic Parallel Micromanipulator,” Proceeding of the 1998 IEEE/RSJ International Conference Intelligent Robots and Systems, 2, pp. 770-775.14. Liu, Y. T., and Higuchi, T., 2001, “Precision Positioning Device Utilizing Combined Piezo-VCM Actuator,” Journal of the Japan Society for Precision Engineering, 67, pp. 70-75.15. Liu, Y. T., and Higuchi, T., 2001, “Precision Positioning Device Utilizing Impact Force of Combined Piezo-Pneumatic Actuator,” IEEE/ASME Transactions on Mechatronics, 6, pp. 467-473.16. Preumont, A., 1997, Vibration Control of Active Structures: An Introduction, Kluwer Academic, Dordrecht.17. Hunt, K. H., and Grossley, F. R. E., 1975, “Coefficient of Restitution Interpreted as Damping in Vibroimpact,” ASME Journal of Applied Mechanics, 7, pp. 440-445.18. Lankarani, H. M., and Nikravesh, P. E., 1990, “A Contact Force Model with Hysteresis Damping for Impact Analysis of Multibody Systems,” ASME Journal of Mechanical Design, 112, pp. 369-376.19. Lankarani, H. M., and Nikravesh, P. E., 1992, “Hertz Contact Force Model with Permanent Indentation in Impact Analysis of Solids,” ASME Advances in Design Automation, 44, pp. 391-395.20. Shivaswamy, S., and Lankarani, H. M., 1997, “Impact Analysis of Plates Using Quasi-Static Approach,” ASME Journal of Mechanical Design, 119, pp. 376-381.21. Southward, S. C., and Radcliffe, C. J., 1991, “Robust Nonlinear Stick-Slip Friction Compensation,” ASME Journal of Dynamic System, Measurement and Control, 113, pp. 639-645.22. Shabana, A. A., 1991, Theory of Vibration, Springer-Verlag, New York.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 奈米平台精密控制技術之研發 2 奈米操控之嵌入式韌體研發 3 奈米操控之混合電路研製 4 壓電元件與彈簧所構成之高精度自走式移動檯之分析研究 5 結合壓電式自走機構之氣壓缸定位裝置 6 利用壓電衝擊力之奈米級氣壓驅動定位裝置 7 壓電元件與彈簧機構所構成之自走式高精度移動檯 8 壓電元件與彈簧所構成之高精度大行程移動台之分析研究 9 壓電衝擊力之驅動控制器開發 10 利用機電等效回路之壓電致動器的動態特性模擬 11 壓電旋動平檯在光纖對準作業之應用研究

 1 ?李進生、盧陽正(1999)，「風險值：觀念與估算方法」，證券金融季 2 周大慶(1999)，「銀行資本適足率與風險管理」，金融研訓季刊。

 1 以雙片壓電懸臂樑進行材料的黏彈性量測 2 壓電振動平板的能量收集與轉換 3 壓電元件與彈簧所構成之高精度自走式移動檯之分析研究 4 壓電材料結合之械形體在面外剪力負載下之機電場分析 5 壓電致動器對混合邊界條件板結構之彎曲與振動分析 6 小型壓電馬達之研究及其應用 7 壓電致動器之和差調變式驅動電路研製 8 多頻道有機壓電感測器研製與應用 9 聚二氟亞乙烯再生化抗體壓電感測器之應用及特性分析 10 使用壓電彎片於近場光碟機的飛行高度控制 11 環型壓電變壓器應用於直流電源轉換器之研究 12 以有限元素法探討壓電振動能量擷取系統之機電行為 13 發電機定子撓性連結器的動態模擬分析 14 以FPGA為基礎於Scott-Russell微定位平台之適應性遞迴步階模糊控制 15 壓電式反流器驅動控制電路製作

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室