跳到主要內容

臺灣博碩士論文加值系統

(44.197.230.180) 您好!臺灣時間:2022/08/20 14:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃泰崑
研究生(外文):Tai-Kun Huang
論文名稱:受到彈簧/壓電耦合致動器撞擊之精密平檯的動態響應
論文名稱(外文):Dynamic Response of a Precision Table Impacted by a Spring-Mounted Piezoelectric Actuator
指導教授:馮榮豐馮榮豐引用關係
指導教授(外文):Rong-Fong Fung
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:機械與自動化工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:35
中文關鍵詞:衝擊力精密定位壓電元件
外文關鍵詞:Precision PositioningImpact ForcePiezoelectric Element
相關次數:
  • 被引用被引用:3
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
使用壓電致動器,精密定位已從微米降至奈米等級。彈簧/壓電耦合致動器的精密定位運動,可獲得高精密及大位移的能力。在本文中,將分別利用分佈參數系統(Distributed Parameter System)和集總參數系統(Lumped Parameter System)推導出,彈簧/壓電耦合致動器撞擊精密定位平檯的動態響應。而滑動檯的運動、打擊部與滑動檯之間的接觸力及由V型溝槽所造成的摩擦力,都將於本文中討論。比較實驗結果與數值解,將驗證本文提出的數學理論的正確性。
The piezoelectric actuator (PA) has been used for precision positioning from micrometer down to nanometer scale. In this paper, a soft-mounted PA is designed with a low-stiffness spring element to achieve a high accuracy and large displacement in precision positioning motion. The motion of the sliding table, the contact force between the hammer and the sliding table, and the stick-slip frictional force caused by the grinded groove are investigated. The governing equations of the distributed and lumped parameter systems are formulated to obtain the dynamic responses, which agree well with the experimental results.
1. Introduction-------------------------------------------1
2. Dynamic Modeling---------------------------------------3
2.1 The Physical Model------------------------------------3
2.2 The Distributed Parameter System----------------------3
2.2.1 The Kinetic Energy----------------------------------4
2.2.2 The Strain Energy-----------------------------------5
2.2.3 The Virtual Work------------------------------------5
2.2.4 The Hamilton’s Principle---------------------------6
2.2.5 The Contact Force-----------------------------------7
2.2.6 The Friction Force----------------------------------7
2.3 The Lumped Parameter System---------------------------8
2.3.1 Finite Element Formulation--------------------------9
2.3.2 The Special Case------------------------------------9
2.3.3 The Governing Equation-----------------------------10
2.3.4 The Contact and Non-Contact Configurations---------11
2.4 Discussion of Various Methods------------------------11
3. Dynamic Response--------------------------------------13
3.1 Experimental Results---------------------------------13
3.1.1 Experimental setup---------------------------------13
3.1.2 Step Response from the Experiment------------------13
3.2 Numerical Solutions----------------------------------14
3.2.1 Parameter Choosing---------------------------------14
3.2.2 Numerical Solutions--------------------------------15
3.3 Discussions------------------------------------------16
4. Conclusion--------------------------------------------18
References-----------------------------------------------19
Appendix A-----------------------------------------------23
Appendix B-----------------------------------------------26
1. Oiwa, T., and Matsunaga, T., 2000, “A study on Torsional Elastic Hinge,” Journal of the Japan Society for Precision Engineering, 66, pp. 955-959.2. Tsuda, N., Yamada, H., Ishida, F., Miyashita, M., and Yamaguchi, M., 1989, “Wide Range STM,” Journal of the Japan Society for Precision Engineering, 55, pp. 146-151.3. Okayama, S., Bando, H., Tokumoto, H., and Kajimura, K., 1985, “Piezoelectric Actuator for Scanning Tunneling Microscopy,” Japanese Journal of Applied Physics, 24, pp. 152-155.4. Scire, F. E., and Teague, E. C., 1978, “Piezodriven 50-mm Range Stage with Subnanometer Resolution,” Review of Scientific Instruments, 42, pp. 1735-1740.5. Chang, S. H., Tseng, C. K., and Chien, H. C., 1999, “An Ultra-precision XY Piezo-micropositioner-Part I: Design and Analysis,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 46, pp. 897-905.6. Chang, S. H., and Du, B. C., 1998, “A Precision Piezodriven Micropositioner Mechanism with Large Travel Range,” Review of Scientific Instruments, 69, pp. 1785-1791.7. Chang, S. H., and Li, S. C., 1999, “A High Resolution Long Travel Friction-Drive Micropositioner with Programmable Step Size,” Review of Scientific Instruments, 70, pp. 1-7.8. Burleigh Instruments, 1975, U.S. Patent: 3, 902, 084.9. Shamoto, E., and Moriwaki, T., 1997, “Development of a Walking Drive Ultraprecision Positioner,” Precision Engineering, 20, pp. 85-92.10. Ni, J., and Zhu, Z., 2000, “Design of a Linear Piezomotor with Ultra-High Stiffness and Nanoprecision,” IEEE/ASME Transactions on Mechatronics, 5, pp. 441-443.11. Higuchi, T., Watanabe, M., and Kudoh, K., 1988, “Precise Positioner Utilizing Rapid Deformations of a Piezo Electric Element,” Journal of the Japan Society for Precision Engineering, 54, pp. 75-80.12. Moriyama, S., Harasa, T., and Takanashi, A., 1985, “Precision X-Y Stage with a Piezo-Driven Fine-Table,” Journal of the Japan Society for Precision Engineering, 50, pp. 718-723.13. Kallio, P., Zhou, Q., Lind, M., and Koivo, H. N., 1998, “Position Control of a 3 DOF Piezohydraulic Parallel Micromanipulator,” Proceeding of the 1998 IEEE/RSJ International Conference Intelligent Robots and Systems, 2, pp. 770-775.14. Liu, Y. T., and Higuchi, T., 2001, “Precision Positioning Device Utilizing Combined Piezo-VCM Actuator,” Journal of the Japan Society for Precision Engineering, 67, pp. 70-75.15. Liu, Y. T., and Higuchi, T., 2001, “Precision Positioning Device Utilizing Impact Force of Combined Piezo-Pneumatic Actuator,” IEEE/ASME Transactions on Mechatronics, 6, pp. 467-473.16. Preumont, A., 1997, Vibration Control of Active Structures: An Introduction, Kluwer Academic, Dordrecht.17. Hunt, K. H., and Grossley, F. R. E., 1975, “Coefficient of Restitution Interpreted as Damping in Vibroimpact,” ASME Journal of Applied Mechanics, 7, pp. 440-445.18. Lankarani, H. M., and Nikravesh, P. E., 1990, “A Contact Force Model with Hysteresis Damping for Impact Analysis of Multibody Systems,” ASME Journal of Mechanical Design, 112, pp. 369-376.19. Lankarani, H. M., and Nikravesh, P. E., 1992, “Hertz Contact Force Model with Permanent Indentation in Impact Analysis of Solids,” ASME Advances in Design Automation, 44, pp. 391-395.20. Shivaswamy, S., and Lankarani, H. M., 1997, “Impact Analysis of Plates Using Quasi-Static Approach,” ASME Journal of Mechanical Design, 119, pp. 376-381.21. Southward, S. C., and Radcliffe, C. J., 1991, “Robust Nonlinear Stick-Slip Friction Compensation,” ASME Journal of Dynamic System, Measurement and Control, 113, pp. 639-645.22. Shabana, A. A., 1991, Theory of Vibration, Springer-Verlag, New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top