跳到主要內容

臺灣博碩士論文加值系統

(44.200.175.255) 您好!臺灣時間:2022/08/11 13:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王正偉
研究生(外文):Cheng-Wei Wang
論文名稱:壓電元件與彈簧所構成之高精度自走式移動檯之分析研究
論文名稱(外文):Research on High-Precision Self-Moving Positioning Stages Utilizing Spring-mounted Piezoelectric Actuators
指導教授:劉永田
指導教授(外文):Yung-Tien Liu
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:機械與自動化工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:85
中文關鍵詞:自走機構精密定位衝擊力壓電元件彈簧
外文關鍵詞:Precision PositioningSpringSelf-moving MechanismImpact ForcePiezoelectric Actuator
相關次數:
  • 被引用被引用:9
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:5
摘 要
本論文為配合精密零組件之自動組裝或接合作業、精密檢查作業等產業需求,建構壓電元件與彈簧所構成之自走式移動檯。此移動檯之驅動原理乃利用壓電元件瞬間變形所產生之衝擊力用於敲擊移動檯而造成微動;並利用彈簧可伸縮之特性,使壓電元件能持續敲擊移動檯而達到自走功能。移動檯的特點在於:利用衝擊力的驅動方式,能有效克服傳統機構在滑動面間所產生的粘著-滑動之現象,使移動檯具有微╱奈米的微動步幅;其次,利用極簡單的壓縮彈簧而不需任何位移放大機構,就能有效克服壓電元件僅有數微米之作動範圍的限制。

本論文之內容包含單方向實驗裝置之建構、移動檯特性之驗證、理論式之建構與模擬,以及1自由度自動控制系統之建構等。在移動特性的驗證上,首先根據所建構之單方向驅動的移動檯,探討驅動電壓之振幅、移動檯之質量、彈簧之剛性,以及預壓力之大小等參數對移動特性的影響,並確認移動檯具有10 nm以下連續微動之高精密定位能力;在理論分析上,利用簡單的質量-阻尼-彈簧之機械振動系統,模擬移動檯之動態特性,模擬之結果並與實驗數據相比較,確認理論分析模型的正確性;最後,在1自由度自動控制系統上,建構包含個人電腦、數據擷取裝置、驅動電源迴路、控制器等之閉迴路控制系統,實施自動控制的結果,確認移動檯能達到擷取卡之最高解析度12nm的定位精度。

由於本論文所探討之壓電元件與彈簧所構成之自走式移動檯,具有微動步幅達奈米級、作業行程大,以及控制器相對簡單等優點,極適合在精密產業上的應用。尤其,由於構造簡單,易於建構成多自由度的微動檯,預期將在光纖接合或精密零組件組裝之自動化作業,或半導體、生物試片之精密檢查作業上,受到廣泛的應用。
ABSTRACT
This thesis proposes a self-moving positioning stage consisting of a piezoelectric actuator and a spring for the applications of the automatic assembly, alignment and examination works of miniaturized precision components. The configurations of the positioning stage are to utilize the impact force caused by the rapid deformation of the piezoelectric actuator for the actuation of the positioning stage, and to utilize a compression spring to keep the continuous actuation by the piezoelectric actuator for the self-moving ability. The main advantages of the positioning stage are described as: by utilizing the impact force of piezoelectric actuator, it can overcome the stick-slip phenomenon that commonly occurs between the sliding surface in traditional mechanisms, hence the positioning stage can feature micron/nano step motion ability. Furthermore, the main disadvantage of the piezoelectric actuator in which its stroke is limited to only a few microns is successfully overcome by the combination with a simple compression spring.

The content of the thesis covers the following research works: the configurations of the experimental setups which were used for examining the motion characteristics of the positioning stages were described, the theoretical models based on the configured experimental setups were established and the theoretical dynamic characteristics were analyzed, and a control model based on the experimental setup was configured and the experiments for the automatic control system were carried out. In the works for examining the motion characteristics of the positioning stage, an experimental setup with the actuation along only one direction of motion was configured. Several parameters, e.g., the amplitude of the applied voltage, the mass of the positioning stage, the stiffness of the spring, and the pre-set contact force, which affect the motion behaviors of the positioning stage were examined and discussed. The experimental results show that the proposed positioning stage can be continuously actuated precisely with 10-nanometer order of precision step motion. In the works for theoretically analyzing the dynamic characteristics of the positioning stage, a simple mass-damper-spring mechanical vibration model was established, and the simulation works were carried out. According to the numerical results agreed well with experimental results, the validation of the analysis model was confirmed. In the works for examining the characteristics of automatic positioning control, a closed-loop control system including the positioning stage having one-degree-of-freedom (1-DOF), personal computer, measuring device, power supplier and controller was configured. The experimental results show that the control system can successfully position the stage with the accuracy of 12 nm. This accuracy is limited by the resolution of the measuring system.

Having the advantages of high-precision positioning ability, large travel range, and simple controller, it is expected that the positioning stage developed in the thesis will be widely applied to the precision industry. Especially, due to its simple structure, it is easier to configure the positioning stage having multi-degree-of-freedom in the future works. Their applications will cover the alignment works for the laser-fiber connectors, automation assembly works for the miniaturized precision components, and the precision examination works for the semiconductor or biological fields.

中文摘要---------------------------------------------------------------------------------------------i
英文摘要--------------------------------------------------------------------------------------------ii
誌謝-------------------------------------------------------------------------------------------------iv
目錄--------------------------------------------------------------------------------------------------v
表目錄---------------------------------------------------------------------------------------------viii
圖目錄----------------------------------------------------------------------------------------------ix
符號說明------------------------------------------------------------------------------------------xii
第一章緒論----------------------------------------------------------------------------------------1
1.1前言-------------------------------------------------------------------------------------------1
1.2研究背景-------------------------------------------------------------------------------------1
1.3精密組裝作業簡介-------------------------------------------------------------------------2
1.3.1傳真機用光學頭電路板的應用------------------------------------------------------2
1.3.2光纖的接續------------------------------------------------------------------------------3
1.4文獻探討------------------------------------------------------------------------------------4
1.5本論文之研究目的-----------------------------------------------------------------------12
1.6論文架構-----------------------------------------------------------------------------------12
第二章 PZT壓電元件特性介紹--------------------------------------------------------------13
2.1前言-----------------------------------------------------------------------------------------13
2.2壓電元件之基本認識--------------------------------------------------------------------14
2.2.1壓電效應-------------------------------------------------------------------------------14
2.2.2壓電元件的種類----------------------------------------------------------------------15
2.2.3壓電元件磁滯與潛變現象----------------------------------------------------------18
2.2.4位移放大機構-------------------------------------------------------------------------19
2.3由壓電致動器所構成之自走機構-----------------------------------------------------22
2.3.1 IDM自走機構的驅動原理----------------------------------------------------------22
2.3.2 IDM自走機構應用於定位裝置之原理-------------------------------------------24
2.4壓電方程式--------------------------------------------------------------------------------25
2.5壓電特性參數-----------------------------------------------------------------------------26
2.6本論文所使用之壓電元件--------------------------------------------------------------28
2.7結論-----------------------------------------------------------------------------------------29
第三章 自走式移動檯基本特性之驗證-----------------------------------------------------31
3.1前言-----------------------------------------------------------------------------------------31
3.2移動檯之驅動原理-----------------------------------------------------------------------31
3.2.1移動檯之組成-------------------------------------------------------------------------31
3.2.2驅動過程-------------------------------------------------------------------------------32
3.3實驗架構與方法--------------------------------------------------------------------------34
3.3.1移動檯之設計與安裝----------------------------------------------------------------34
3.3.2實驗方法-------------------------------------------------------------------------------35
3.4單方式自走式移動檯之實驗結果-----------------------------------------------------37
3.4.1自由狀態下驅動器之步階響應----------------------------------------------------37
3.4.2移動檯之步階響應-------------------------------------------------------------------38
3.4.3單方向移動檯連續驅動-------------------------------------------------------------40
3.4.4雙向自走式移動檯之步階響應----------------------------------------------------41
3.4.5雙向自走式移動檯位移路徑圖----------------------------------------------------42
第四章 理論分析--------------------------------------------------------------------------------48
4.1前言-----------------------------------------------------------------------------------------48
4.2理論分析模式-----------------------------------------------------------------------------48
4.2.1單方向自走式移動檯理論分析模式----------------------------------------------48
4.2.2雙向自走式移動檯理論分析模式-------------------------------------------------51
4.3模擬工作之計算方式--------------------------------------------------------------------53
4.3.1狀態方程式----------------------------------------------------------------------------53
4.3.2摩擦力狀態之變化-------------------------------------------------------------------55
4.3.3系統參數-------------------------------------------------------------------------------56
4.3.4數值分析演算法----------------------------------------------------------------------60
4.4數值模擬結果-----------------------------------------------------------------------------61
4.4.1驅動器之步階響應-------------------------------------------------------------------61
4.4.2單方向移動檯之步階響應----------------------------------------------------------65
4.4.3 1自由度自走式移動檯模擬結果--------------------------------------------------66
4.5數值模擬與實驗結果的比較-----------------------------------------------------------68
4.5.1驅動電壓對位移的影響-------------------------------------------------------------68
4.5.2定位平台質量對位移的影響-------------------------------------------------------68
4.5.3彈簧剛性對位移的影響-------------------------------------------------------------69
4.5.4預設接觸力對位移的影響----------------------------------------------------------70
第五章 1自由度自動定位實驗---------------------------------------------------------------72
5.1 1前言---------------------------------------------------------------------------------------72
5.2實驗裝置的組成--------------------------------------------------------------------------72
5.3控制模式-----------------------------------------------------------------------------------74
5.4控制方法-----------------------------------------------------------------------------------75
5.5實驗結果-----------------------------------------------------------------------------------77
第六章 結論--------------------------------------------------------------------------------------81
6.1結論-----------------------------------------------------------------------------------------81
6.2未來展望-----------------------------------------------------------------------------------82
參考文獻-------------------------------------------------------------------------------------------83






























表目錄
表2-1 各種不同致動器的比較------------------------------------------13
表3-1 積層形壓電元件規格表------------------------------------------36
表3-3 間隙感測器規格表----------------------------------------------37
表4-1 模擬參數值----------------------------------------------------61





























圖目錄
圖1-1 利用推力組裝CCD電路板時所發生的撓曲現象-----------------------2
圖1-2 6自由度雷射二極體與光纖陣列接續裝置示意圖---------------------3
圖1-3 利用電磁衝擊力構成之自走機構的驅動過程-------------------------5
圖1-4 衝擊力驅動機構之構造-------------------------------------------6
圖1-5 現有商品化產品PiezoPecker®------------------------------------7
圖1-6 滑動式衝擊力驅動機構的構造-------------------------------------7
圖1-7 飛行鋼絲基本定位裝置之概要圖-----------------------------------8
圖1-8 衝擊力產生器---------------------------------------------------8
圖1-9 壓電元件與音圈馬達所構成之驅動器-------------------------------9
圖1-10 壓電元件與空壓缸所構成之驅動器-------------------------------10
圖1-11 商品化產品-「芯打」定位機構----------------------------------10
圖1-12 利用商品「芯打」所構成之光纖對準自動定位系統-----------------11
圖1-13 壓電元件與彈簧所組成之精密定位裝置---------------------------12
圖2-1 壓電效應示意圖------------------------------------------------15
圖2-2 壓電元件之分類------------------------------------------------16
圖2-3 單層型壓電元件之構造------------------------------------------17
圖2-4 積層型壓電元件之構造------------------------------------------17
圖2-5 雙層壓電樑之構造----------------------------------------------17
圖2-6 壓電元件之位移量與驅動電壓間的磁滯現象------------------------18
圖2-7 壓電元件之位移量與電荷間無磁滯現象----------------------------19
圖2-8 壓電元件之潛變特性圖------------------------------------------19
圖2-9 槓桿式位移放大機構--------------------------------------------20
圖2-10 平行運動放大機構---------------------------------------------21
圖2-11 尺蠖蟲機構之驅動原理-----------------------------------------21
圖2-12 IDM自走機構之驅動電壓波形-----------------------------------23
圖2-13 IDM自走機構之驅動過程---------------------------------------23
圖2-14 IDM自走機構應用於定位裝置之動作原理-------------------------24
圖2-15 積層型壓電元件的構造-----------------------------------------29
圖3-1 自走式移動檯之構成要素及安裝圖--------------------------------32
圖3-2 自走式移動檯單次驅動過程--------------------------------------33
圖3-3 驅動器實體圖--------------------------------------------------34
圖3-4 自走式移動檯實體圖--------------------------------------------34
圖3-5 雙向自走式移動檯實體圖----------------------------------------35
圖3-6 單方向移動檯之實驗裝置----------------------------------------35
圖3-7 自走式移動檯之實驗裝置示意圖----------------------------------36
圖3-8 驅動器實驗裝置實體圖------------------------------------------38
圖3-9 驅動器之步階響應----------------------------------------------38
圖3-10 移動檯之步階響應---------------------------------------------39
圖3-11 驅動電壓振幅對移動檯之影響-----------------------------------40
圖3-12 小電壓振幅連續驅動時移動檯之運動行為-------------------------41
圖3-13 雙向自走式移動檯之步階響應-----------------------------------42
圖3-14 雙向自走式移動檯之位移路徑圖---------------------------------43
圖3-15 雙向移動檯未加負載時之位移路徑圖-----------------------------44
圖3-16 雙向移動檯加負載982.5g時之位移路徑圖------------------------45
圖3-17 雙向移動檯在撘載不同負載時之位移路徑圖-----------------------47
圖4-1 單方向自走式移動檯之理論分析模式-----------------------------49
圖4-2 Karnopp摩擦力判斷模式----------------------------------------51
圖4-3 1自由度自走式移動檯之理論分析模式----------------------------52
圖4-4 典型次阻尼系統之位移曲線-------------------------------------58
圖4-5 阻尼之對數衰減位移曲線---------------------------------------58
圖4-6 無鑲嵌彈簧的驅動器之步階響應(質量比0.3217)------------------62
圖4-7 無鑲嵌彈簧的驅動器之步階響應(質量比0.8961)------------------63
圖4-8 有鑲嵌彈簧的驅動器之步階響應(質量比0.3217)------------------64
圖4-9 有鑲嵌彈簧的驅動器之步階響應(質量比0.8989)------------------65
圖4-10 自走式移動檯之步階響應---------------------------------------66
圖4-11 雙向自走式移動檯單邊驅動之步階響應---------------------------67
圖4-12 不同驅動電壓振幅對移動特性的影響-----------------------------68
圖4-13 不同質量之定位平台對移動特性的影響---------------------------69
圖4-14 不同彈簧剛性對移動特性的影響---------------------------------70
圖4-15 不同預設接觸力對移動特性的影響-------------------------------71
圖5-1 1自由度自動定位實驗裝置--------------------------------------73
圖5-2 1自由度自動定位裝置系統架構圖---------------------------------73
圖5-3 打擊部與滑動檯接觸時的簡化模型--------------------------------75
圖5-4 自動控制演算法之流程圖----------------------------------------76
圖5-5 自動定位目標為5μm時,移動檯座標位置與誤差之變化軌跡---------77
圖5-6 自動定位目標為10μm時,移動檯座標位置與誤差之變化軌跡--------78
圖5-7 自動定位目標為15μm時,移動檯座標位置與誤差之變化軌跡--------79
圖5-8 定位目標為5μm時,自動定位過程位置與時間之關係圖-------------80
圖5-9 定位目標為10μm時,自動定位過程位置與時間之關係圖-------------80
圖5-10 定位目標為15μm時,自動定位過程位置與時間之關係圖-------------80
參考文獻1.S. A. Hall, R. Lane, H. —C. Wang, A. Gareri, 1994, “Assembly of Laser-Fiber Array”, Journal of Lightwave Technology 12(10), pp.1820-1826.2.O. T. Strand, 1996, “Lost-cost automated fiber pigtailing machine”, Electronic components and Technology Conference, pp.520-523.3.J. Ni, Z. Zhu, 1997, “Developing a linear piezomotor with nanometer resolution and high stiffness”, IEEE/ASME Tran. Mechatronics 2(1), pp22-29.4.J. Ni, Z. Zhu, 2000, “Design of a linear piezomotor with ultra-high stiffness and nanoprecision”, IEEE/ASME Tran. Mechatronics 5(4), pp441-443.5.H. K. Wickramasinghe, 2000, “Progress in scanning probe microscopy”, Acta Materialia, 48 , pp347-358.6.宗方睦夫,松野晋,「ねじで仮締めされたセンサ基板の位置決め」,機械設計,第38巻第16号,1994,pp.44-45.7.K. Tim, W. Xu, 1996, “The design and characteristics of piezomotoes using flexure-hinged displacement amplifiers”, Robotics and Autonomous Systems, 19, pp.89-197.8.Burleigh Instruments, 1975, U.S. Patent: 3,902,084.9.S. H. Chang, B. C. Du, 1998, “A precision piezodriven micropositioner mechanism with large travel range”, Rev. Sci. Instrum., 69(4), pp.1785-1791.10.T. Morita, Y. Yoshida, Y. Okamoto, M. K. Kurosawa, T. Higuchi, 1999, “A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator”, IEEE Tran. Ultrason., Ferroelect., and Freq. Contr. 46 pp.1439-1435.11.A. Bergader, J. —M. Bregut, C. Schmitt, R. Clavel, 2000, “Micropositioners for microscopy applications based on the stick-slip effect”, IEEE Intl. Symp. On Micromechatronics and Human Science, pp.213-216.12.T. Higuchi, 1984, “Application of Electromagnetic Impulsive Force To Precision Positioning Tools in Robot System”, Second International Symposium of Robotics Research, Kyoto, Japan, 20-23, pp.144-149.13.T. Higuchi, Y. Hojjaf, M. Watanabe, 1987, “Micro actuator Using Recoil of An Massachusetts”, Hyannis, Nov. 9-11, pp.16-21.14.T. Higuchi, M. Watanabe, and K. Kudoh, 1988, “Precision Positioning Utilizing Rapid Defermations of a Piezo Electric Element”, Journal of the Japan Society of Precision Engineering, Vol.54, No.11, Nov., pp.2107-2112. [in Japanese].15.樋口俊郎,山形豊,「圧電素子の急速変形を利用した超精密位置決め機構(第2報)」,精密工学会誌,第58巻10号(1992),pp.137-142.16.K. Kudoh, T. Gotoh, K. Saito, Y. Kamagata, K. Furutani, and T. Higuchi, 1990, “Developing of pizeo micromanipulator for cell micromanipulation”, J. Mamm. Ova Res. 7(1), pp.7-12. [in Japanese].17.H. Zhang, T. Higuchi, N. Nishioki, 1997, “Dual Tunneling-Unit Scanning Microscopy for Length Measurement Based on Crystalline Lattice”, J. Vac. Sci. Technol. B 15(1), pp.174-177.18.Y. Yamagata, T. Higuchi,H. Saeki, H. Ishimaru, 1990, ”Ultrahigh Vacuum Precision Positioning Device Utilizing Rapid Deformation of Piezoelectric Elements”, Journal of Vacuum Science & Technology A, 8, (6), pp.89-91.19.K. Furutani, M. Urushibata, T. Enami, N. Mohri, 1998, “A linear drive mechanism for dot-matrix electrical discharge machining”, Proc. of 4th Japan-France Congress and 2nd Asia-Europe Congress on Mechatronics, Kitakyushu, Japan, pp.96-101.20.秩父小野田株式会社,「位置決めユニットPeizoPecker」型錄。21.岡本泰浩,吉田龍一,1997,「圧電リニアアクチュエータの開発」,電子通信学会論文誌,A, J8-A, (10), pp.1751-1756.22.Y. T. Liu, Y. Yamagata, T. Higuchi, 1998, “A 3-DOF Micropositioning Device For Automatic Assembly By Using Impact Force of Piezoelectric Flying Wires,” Japan-US Symposium of Flexible Automation, Otsu, Japan, July 12-15, pp.69-76.23.矢野健,福井泉,「圧電型インパクトプリンタヘッドの振幅拡大機構」,電子通信学会機構部品研究会,EMC87-63,昭和63年3月18日.24.劉永田,樋口俊郎,工藤謙一,”壓電元件與VCM所組合之長行程精密驅動器”,1998年度精密工学会秋季大会講演論文集,pp.710. 25.Y. T. Liu, and T. Higuchi, 2001, “Precision Positioning Device Utilizing Impact Force of Combined Piezo-Pneumatic Actuator,” IEEE/ASME Trans. on Mechatronics, 6, (4), pp.467-473.26.http://homepage2.nifty.com/nanoact/27.Y. T. Liu, Higuchi T., R. F. Fung, “A Novel High-Precision and Large-Stroke Positioning Table Utilizing Impact Force of a Spring-mounted Piezoelectric Actuator”, Prec eng;28.許溢适,1996,壓電陶瓷新技術,初版,文笙書局,台北。29.W. P. Mason, 1981, ”Piezoelectricity, Its History and Applications,” J. Acoust. Soc. Am, 70, (6), pp.1561-1566.30.内野研二,1991,「演習╱電歪致動器」,森北出版。31.内野研二,1986,「圧電╱電歪致動器」,森北出版。32.許溢适,1996, 「壓電/電歪致動器」,文笙書局,台北。33.小池,斎藤,石川,友田,「積層型圧電アクチュエータの作動解析」,第5回電磁力関連のダイナミックスシンポジウム講演論文集,’93-6-9∼11, pp.376-381.34.Zhenqi Zhu, Bi Zhang, “A Linear Piezoelectric Integrated by a Monolithic Flexural Frame”, Journal of Mechanical Design, Sep. 1997, Vol. 119, pp.414-417.35.Chang S. H. Tseng, C. K. and Chien H. C., 1999, “An Ultra-precision XY Piezo-micropositioner - Part I: Design and Analysis,” IEEE Trans, Ultrasonic, Ferroelectrics, and Frequency Control, 46, (4), pp. 897-905.36.Abdelhafid Omari, Aiguo Ming, Shuji Nakamaura, and Chisato Kanamori, 2000, “Development of a High-Precision Mounting Robot with Fine Motion Mechanism,” Journal of the Japan Society of Precision Engineering, 66, (10), pp. 1583-1589.37.樋口俊郎,山形豊,会田直樹,宗方睦夫,「衝擊力による移動機構を用いた小型部品精密位置決め機構」,1992年度精密工学会春季大会講演論文集,pp.677-678.38.張所鋐,1995,”智慧型系統之致動器與感測器”,科儀新知,第十六卷,第六期,頁30-41,六月。39.林志豪,1999,”XYZ-三軸精密微動定位系統設計與制動機制”,大葉大學機械工程研究所碩士論文。40.TOKIN,2000,產品型錄。41.D. Karnopp, 1985, “Computer Simulation of Stick-Slip in Mechanical Dynamic System”, ASME Journal of Dynamic Systems, Measurement, and Control, Vol.07, March, pp.100-103.42.王柏村,2001,”振動學”,全華書局,二版,台北。43.劉永田,樋口俊郎,2001,”壓電元件與空壓缸所組成之高精度長行程驅動器”,中華民國自動控制研討會,pp.306-311.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊