跳到主要內容

臺灣博碩士論文加值系統

(44.197.230.180) 您好!臺灣時間:2022/08/20 11:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方鄒誠
研究生(外文):Chou-Cheng Fang
論文名稱:黑眼豇豆嵌紋病毒台灣系統基因序列之定序與分析
論文名稱(外文):Molecular sequencing and analysis of the viral genomic regions of Blackeye cowpea mosaic virus-TW strain
指導教授:王惠亮
指導教授(外文):Hui-Liang Wang
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:生物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:117
中文關鍵詞:黑眼豇豆嵌紋病毒馬鈴薯Y病毒屬核苷酸序列親源演化樹
外文關鍵詞:Blackeye cowpea mosaic virusPotyvirus genusnucleotide sequencesphylogenetic trees
相關次數:
  • 被引用被引用:8
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
黑眼豇豆嵌紋病毒( Blackeye cowpea mosaic virus;BlCMV ),屬於Potyviridae科Potyvirus屬,是感染豇豆最重要的病毒之一,可經由機械傳播、蚜蟲以非永續性的方式傳播及經由種子傳播,在地理的分佈上更是遍佈全球。將病葉萃出液經PEG沈降及硫酸銫等密度離心後可得純化之病毒顆粒,病毒RNA萃取後經電泳顯示其長度均約10 Kb。利用反轉錄聚合連鎖反應法來分析黑眼豇豆嵌紋病毒台灣系統的基因序列,結合本實驗室已完成CP基因序列,黑眼豇豆嵌紋病毒台灣系統全長度基因體共含10001個核苷酸,其鹽基組成為3244個A(32.4﹪)、1799個C(18.0﹪)、2381個G(23.9﹪)、2567個T(25.67﹪),其大小和其它potyviruses相似。基因體RNA只含一個轉譯架構,由第133個核苷酸起轉譯至第9738止,共轉譯出一個含3202個氨基酸的複合蛋白。將所完成之BlCMV-TW與國外已解讀完之BCMV-Y、BCMV-R、PStV、SMV、CAbMV、ClYVV、PeMoV、BYMV與LMV比較各基因核苷酸、蛋白質序列相同度,結果顯示BlCMV-TW、BCMV-Y、BCMV-R及PStV這四個病毒之間,除了P1基因外,各基因核苷酸與胺基酸序列相同度均高於80 ﹪。經由序列比對結果顯示,P1、P3與CP基因的N端是變異度最高的區域。此四種病毒皆保有CP基因N端與蚜蟲傳播有關的DAG motiff。在NIb蛋白質基因亦保留了核心複製酶活性部位GDD motif。NIa 蛋白質經由自切在Glu-200與Ser-201產生25kDa的蛋白質。在HC-Pro蛋白質皆保留了KITC與PTK motif。綜合來說,BlCMV-TW、BCMV-Y、BCMV-R及PStV這四個病毒間無論是多重核苷酸或胺基酸序列比對皆展現了高同源性,因此BlCMV-TW和PStV應該是BCMV的不同系統。為了更進一步的瞭解其親源的關係,因此選定P1、P3及CP基因核苷酸和胺基酸序列利用Phylip software繪出親源演化樹,從圖形中可知BlCMV-TW、BCMV-Y、BCMV-R與PStV彼此間親源相當接近,是由一共同祖先演化而來,且此四種病毒因演化距離相當短,因而在圖形上形成一個群聚(cluster),更可證實上述的論點。
Blackeye cowpea mosaic virus ( BlCMV ) is a species of Potyvirus genus in the family of Potyviridae. It is an important virus infecting asparagus bean and occurring worldwide. It is transmitted by mechanical inoculation, several species of aphids in a non-persistent manner and through seeds. Virons of BlCMV-TW was purified from infected leaves of asparagus bean by polyethylene glycol precipitation followed by a Cs2SO4 isopycnic centrifugation. Electrophoretic analysis revealed that a 10 Kb of viral RNA of BlCMV-TW was observed. The cDNAs of BlCMV-TW genes were obtained by using reverse transcription polymerase chain reaction ( RT-PCR ). Full length of viral genome was sequenced. The BlCMV-TW contained 10001 nucleotides including the 5''-nontranscriped region and 3''-terminal poly(A) tails. The base composition of BlCMV-TW RNA showed a high adenine content (32.4 %), followed by uracil (25.67 %), guanine (23.9 %), and cytosine (18.0 %), similar to those of the potyviruses. The genomic RNA of BlCMV-TW contained an open reading frame which starts at position 133 of and terminates at position of 9738, encoding a polyprotein of 3202 amino acids. Comparison of the nucleotide and amino acid sequences of genes with those of reported BCMV-Y、BCMV-R、PStV、SMV、CAbMV、ClYVV、PeMoV、BYMV and LMV revealed that BCMV-Y、BCMV-R、PStV and BlCMV-TW showed over 80﹪identities, excluding P1 gene. The P1、P3、and the N-terminal of CP gene showed more variable regions of the genome. DAG was found motif in the N-terminal of CP gene of BCMV-Y、BCMV-R、PStV and BlCMV-TW involving in the aphid transmission. The results also showed that the NIb gene of BCMV-Y、BCMV-R、PStV and BlCMV-TW conserved the active site of the core replicase, GDD motif. The NIa protein could cleavage itself at the position between Glu-200 and Ser-201 to produce a secondary 25 kDa proteinase. The Hc-Pro gene of BCMV-Y、BCMV-R、PStV and BlCMV-TW conserved the KITC and PTK motif. The comparison of multiple aligments of nucleotide and amino acid sequences among BCMV-Y、BCMV-R、PStV and BlCMV-TW displayed high identities. The result also revealed that BCMV-Y、BCMV-R、PStV and BlCMV-TW were intraspecies. On the other hand, PStV and BlCMV-TW are the different strains of BCMV. The phylogenetic trees of P1、P3and CP gene of ten viruses was obtained by using Phylip software. The result showed that BCMV-Y、BCMV-R、PStV and BlCMV-TW were in the same cluster and had a short branch length in topology. Furthermore, BCMV-Y、BCMV-R、PStV and BlCMV-TW might be from a same ancestry with a close relationship in molecular evidences.
中文摘要......……………….…………………..………………….….. I
英文摘要…………….…….…………………………………..……. III
壹、前言及前人研究………….………………..…………………... 01
一、豇豆及其病害…………………..………………………..… 01
二、黑眼豇豆嵌紋病毒之特性………………………………… 03
三、病毒基因之組成與功能…………………………………… 04
四、植物病毒鑑定、檢驗與病害防治之發展現……………… 12
貳、材料與方法…………………………………..……………….. 16
一、黑眼豇豆嵌紋病毒之純化……………………………….... 16
(一)病毒之來源與分離……….…...………………………… 16
(二)病毒之接種與繁殖………..….…………………..…… 16
(三)病毒之純化..………….……....………………..……… 16
二、黑眼豇豆嵌紋病毒核酸之萃取與電泳分析………..…….. 17
(一)病毒核酸之萃取……………………….……………… 17
(二)病毒核酸電泳分析……………....………………….… 18
三、黑眼豇豆嵌紋病毒基因之定序……...…………………….. . 19
(一)反轉錄聚合酶連鎖反應 ( RT-PCR )…………………. 19
1、引子設計及反應條件…………………………….… 19
2、RT-PCR產物之電泳膠體分析……………………. 22
(二)SMART cDNA 合成技術………………….…………. 22
1、第一股cDNA之合成……………………………… 25
2、第一股cDNA產物之電泳膠體分析…………….… 25
3、聚合酶連鎖反應 ( PCR )……..……………………. 25
4、PCR產物之電泳膠體分析…..…..…...….…………. 27
四、回收cDNA片段………..…..…………………………….. 27
五、基因核酸序列之譯讀……..…..………………………….. 28
六、基因序列之比較………………..………………………… 28
參、結果…….…………………………………………………… 30
一、病毒純化與病毒核酸之萃取……….…………………… 30
(一)病葉篩選結果…………………..……………………. 30
(二)黑眼豇豆病毒接種結果……….….….……………… 30
(三)病毒純化…………………………..………….……… 30
二、病毒核酸萃取與定序…………...…….………………… 31
(一)病毒核酸之萃取與電泳分析……….……….……… 31
(二)病毒基因之定序與分析……………….…….……… 31
1、從CP 基因到P3基因之定序與電泳膠體分析... 31
2、從P3基因到5''-NTR之定序與電泳膠體分析…. 37
a) 第一股cDNA之合成與電泳膠體分析………… 37
b) 聚合酶連鎖反應與電泳膠體分析…..………….. 37
三、黑眼豇豆病毒台灣系統基因核酸序列分析….….…… 40
四、黑眼豇豆嵌紋病毒台灣系統基因序列與國外已發表會感
染豆科植物Potyvirus屬病毒之比較.........................… 48
肆、討論……………………………………………………………. 105
伍、參考文獻………………………………………………………. 111
中華植物保護學會。1999。植物疫情監測手冊〔Ⅱ〕
楊偉正、蕭吉雄。2000。豇豆遺傳資源。農業試驗所技術服務。12月/44期。
陳許玉鈴。2001。四種重要瓜類及蔬菜病毒鞘蛋白基因序列選殖譯讀與分析。國立高雄師範大學生物科學研究所碩士論文。
陳許玉玲、王惠亮。2001。黑眼豇豆病毒台灣分離株鞘蛋白基因與3'端非轉譯區序列之解讀與分析。植物病理學會刊:10:165-172
曹佳莉。2001。蕪菁嵌紋病毒C1和TW系統基因序列選殖與分析。國立高雄師範大學生物科學研究所碩士論文。
江主惠。1995。木瓜輪點病毒身體外及身體內具感染力轉錄體之構築及重組病毒體致病力之分析。國立中興大學植物病理學研究所博士論文。
包慧俊。1999。木瓜輪點病毒鞘蛋白轉基因木瓜抗病性狀之研究。國立中興大學植物病理學研究所博士論文。
張清安、林俊義、楊佐琦、詹竹明,1993。無病毒豇豆種子之生產與應用。蔬菜保護研討會專刊:83-93
張清安、林瑩達、詹竹明、陳金枝。1996。無病毒百香果苗及豇豆種子之生產與應用。「健康清潔植物培育研習會」專刊:pp. 106-112
Albersio, J., Lima, A., Purcifull, D. E. and Hiebert, E. 1979. Purification, partial characterization, and serology of Blackeye cowpea mosaic virus. Phytopathology 69:1252-1258.
Aleman-Verdaguer, M-E., Goudou-Urbino, C., Dubern, J., Beachy, R. N. and Fauquet, C. 1997. Analysis of the sequence diversity of the P1, HC, P3, NIb and CP genomic regions of several yam mosaic potyvirus isolates:implications for the intraspecies molecular diversity of potyvirus. J. Gen. Virol. 78:1253-1264.
Andrejeva, J., Puurand, U., Merits, A. Rabenstein, F. Järvekülg, L. and Valkonen, J. P. T. 1999. Potyvirus helper component-proteinase and coat protein (CP) have coordinated functions in virus-host interactions and the same CP motif affects virus transmission and accumulation. J. Gen. Virol. 80:1133-1139
Baulcombe, D. C. 1996. Mechanisms of pathogen-derived resistance to viruses in transgenic plants. The plant cell 8: 183-1844.
Blance, S., Lopez Moya, J.J., Wang, R., Garcia-Lamoasona, S., Thornbury, D.W. and Pirone, T. P. 1997. A specific interaction between coat protein and helper component correlates with aphid transmission of a potyvirus. Virology 231:141-147.
Blance, S., Ammar, E.D., Garcia-Lampasona, S., Dolja, V. V., Llave, C., Baker, J., and Pirone, T.P. 1998. Mutations in the potyvirus helper component protein: effects on interaction with virions and aphid stylets. J. Gen. Virol. 79:3119-3122.
Bousalem, M., Douzery, E. J. P. and Fargette, D. 2000. High genetic diversity, distant phylogenetic relationships and intraspecies recombination events among natural populations of yam mosaic virus : a contribution to understanding potyvirus evolution. J. Gen. Virol. 81:243-255.
Cassidy, B., Sherwood, J. L. and Nelson, R. S. 1993. Cloning of the capsid protein gene from a blotch isolate of peanut stripe virus. Arch. Virol. 128:287-297
Carrington, J. C., Jensen, P. E. and Schaad, M. C. 1998. Genetic evidence
for an essential role for potyvirus CI protein in cell-to-cell movement. The Plant Journal 14:393-400.
Carrington, J. C., Kristin D. K. and Lisa, K. J. 2001. Activation and suppression of RNA silencing by plant viruses. Virology 281:1-5.
Chang, C. A. 1993. Viruses of legume crops in Taiwan. Council of Agriculture Plant Protection Series No.1. Proceedings of the Symposium on Plant Virus and Virus-like Diseases:193-212
Cronin, S., Verchot, J., Haldeman, R., Schaad, M. C. and Carrington, J. C. 1995. Long-distance movement factor:A transport function of the potyvirus helper component proteinase. Plant Cell. 7: 549-559.
Dijkstra, J. and Khan, J. A. 1992. A proposal for a bean common mosaic subgroup of potyviruses. Arch. Virol., Suppl. 5:389-395
Ewardson, J. R. and Christie, R. G. 1991. The potyvirus group. Vol. IV, Fla. Agric. Exp. Stn. Monog. 16.
Frenkel, M. J., Jilka, J. M., Shukla, D. D. and Ward, C. W. 1992. Differentiation of potyviruses and their strains by hybridization with the 3´ non-coding region of the viral genome. J. Virol. Methods. 36:51-62
Gal-On, A., Antignus, Y., Rosner, A., and Raccah, B. 1992. A zucchini yellow mosaic virus coat protein gene mutation restores aphid transmissibility but has no effect on multiplication. J. Gen. Virol. 73, 2183-2187.
Gray, S. M. 1996. Plant virus proteins involved in natural vector transmission. Trends in Microbiology 4:259-263.
Gunasinghe, U. B., Flasinski, S., Nelson, R. S., and Cassidy, B. G. 1994. Nucleotide sequence and genome organization of peanut stripe potyvirus. J. Gen. Virol. 75: 2519-2526.
Hajimorad, M. R., Ding, X. S., Flasinski, S., Mahajan, S., Graff, E., Haldeman-Cahill, R., Carrington, J.C., and Cassidy, B.G. 1996. NIa and NIb of peanut stripe potyvirus are present in the nucleus of infected cells, but do not form inclusions. Virology 224:368-379.
Hong, Y., Hunt, A. G., 1996. RNA polymerase activity catalyzed by a potyvirus-encode RNA-dependent RNA polymerase. Virology 226:146-151
Hong, Y., Levay, K., Murphy, J. F., Klein, P. G., Shaw, J. G., and Hunt, A. G. 1995. A potyvirus polymerase interacts with the viral coat protein and VPg in the yeast cells. Virology 214:159-166.
Huguenot, C., Furneaux, M. T. and Hamilton, R. I. 1994. Capsid protein properties of cowpea aphid-borne mosaic virus and Blackeye cowpea mosaic virus confirm the existence of two major subgroups of aphid-translated, legume-infecting potyviruses. J. Gen. Virol. 75:3555-3560
Jenner, C. E., Sanchez, F., Nettleship, S. B., Foster, G. D., Ponz, F. and
Walsh, J. A. 2000. The cylindrical inclusion gene of Turnip mosaic virus
encodes a pathogenic determinant to the Brassica resistance gene
TuRB01. Mol. Plant-Microbe Interact. 13:1102-1108.
Jayaram, C., Hill, J. H., and Miller, W. A. 1992. Complete nucleotide sequences of two soybean mosaic virus strains differentiated by response of soybean containg the Rsv resistance gene. J. Gen. Virol. 73: 2067-2077.
Kasschau, K. D. and Carrington, J. C. 1998. A counterdefensive strategy of plant viruses:suppression of posttranscriptional gene silencing. Cell 95:461-470.
Kekarainen, T., Merits, A., Oruetxebarria, I., Rajamaki, M.-L. and
Valkonen, J. P. T. 1999. Comparsion of the complete sequences of five
different isolates of Potato virus A (PVA), genus Potyvirus. Arch. Virol.
144:2355-2366.
Khan, J. A., Lohuis, D., Goldbach, R. and Dijkstra, J. 1993. Sequence data to settle the taxonomic position of bean common mosaic virus and blackeye cowpea mosaic virus isolates. J. Gen. Virol. 74:2243-2249
Kim, D. H., Han, J. S., Lew, J., Kim, S. S., Kang, B. H., Hwang, D. C.,
Jang, D. S., Kim, W., Song, B. D. and Choi, K. Y. 1998. Effects of mutations in the C-terminal region of NIa protease on cis-cleavage between NIa and NIb. Virology 241:94-100.
Klein, P.G., Klein, R.R., Rodríguez-Cerezo, E., Hunt, A.G., and Shaw, J.G. 1994. Mutational analysis of the tobacco vein mottling virus genome. Virology 204:759-769.
Laín, S., Riechmann, J. L., and García, J.A. 1990. RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus. Nucl. Acids Res. 18:7003-7006.
Léonard, S., Plante, D., Wittmann, S., Daigneault, N., Fortin, M. G. and Laliberté, J. F. 2000. Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4e correlates with virus infectivity. J. Virol. 74:7730-7737.
Li, H. X., Valdez, P., Olvera, R. E. and Carrington, J. C. 1997. Functions of the tobacco etch virus RNA polymerase (NIb):subcellular transport and protein-protein interaction with VPg/proteinase (NIa). J. Virol. 71:1598-1607
Maia, I. G., Haenni, A-L. and Bernardi, F. 1996. Potyviral HC-Pro:a multifunctional protein. J. Gen. Virol. 77:1335-1341.
McKern, N. M., Shukla, D. D., Barnett, O. W., Vetten, H. J., Dijkstra, J., Whittaker, L. W. and Ward, C. W. 1992. Coat protein properties suggest that azuki bean mosaic virus, Blackeye cowpea mosaic virus, peanut stripe virus, and three isolates from soybean are all strains of the same potyvirus. Intervirology 33:121-134
Merits, A., Guo, D., and Saarma, M. 1998. VPg , coat protein and five non-structural proteins of potato A potyvirus bind RNA in a sequence-unspecific manner. J. Gen. Virol. 79:3123-3127.
Pruss, G., Ge, X., Shi, X. M., Carrington, J. C., and Vance, V.B. 1997. Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell 9:859-868.
Restrepo, M. A., Freed, D. D. and Carrington, J. C. 1990. Nuclear transport of plant potyviral proteins. Plant cell 2:987-998.
Restrepo-Hartwig, M,A., and Carrington, J.C. 1994. The tobacco etch potyvirus 6-kilodalton protein is membrane associated and involved in viral replication. J. Virol. 68:2388-2397.
Revers, F., Gall, O. L., Candresse, T. and Maule, A. J. 1999. New advances in understanding the molecular biology of plant/potyvirus interactions. MPMI. 12:367-376.
Riechmann, J. L., Lain, S. and Garcia, J. A. 1992. Highlights and prospects of potyvirus molecular biology. J. Gen. Virol. 73:1-16.
Riechmann, J.L., Cervera, M.T., and Garcia, J.A. 1995. Processing of the plum pox virus ployprotein at the P3-6K1 junction is not required for virus viability. J. Gen. Virol. 76:951-956.
Robaglia, C., Durand-Tardif, M., Tronchet, M., Boudazin, G., Astier-Mamifacier, S., and Casse-Delbart, F. 1989. Nucleotide sequence of potato virus Y (N strain) genomic RNA. J. Gen. Virol. 70:935-947
Rojas, M. R., Zerbini, F. M., Allison, R. F., Gillbertson, R. l. and Lucas W. L. 1997. Capsid protein and helper component - proteinase function as potyvirus cell-to-cell movement proteins. Virology 237:283-295.
Roossinck, M. J. 1997. Mechanisms of plant virus evolution. Annu. Rev. Phytopathol. 35:191-209.
Ryan, M. D., and Flint, M. 1997. Virus-encoded proteinases of the picornavirus super-group. J. Gen. Virol. 78, 699-723.
Sanger, F., Nicklen, S. and Coulson, A. R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. 74:5463-5467.
Sáenz, P., Cervera, M.T., Dallot, S., Quiot, L., Quiot, J.-B., Riechmann, J. L., and Garcia, J. A. 2000. Identification of a pathogenicity determinant of Plum pox virus in the sequence encoding the C-terminal region of protein P3+6K1. J. Gen. Virol. 81:557-566.
Schaad, M. C., Haldeman-Cahill, R., Cronin, S. and Carrington, J. C. 1996. Analysis of the VPg-proteinase (NIa) encoded by tobacco etch potyvirus:effects of mutations on subcellular transport, proteolytic processing, and genome amplification. J. Virol. 70:7039-7048
Schaad, M. C., Jensen, P. E. and Carrington, J. C. 1997. Formation of plant RNA virus replication complexes om membranes:role of an endoplasmic reticulum-targeted viral protein. The EMBO Journal. 16:4049-4059.
Shi, X. M., Miller, H., Verchot, J., Carrington, J. C., and Vance, V. B. 1997. Mutations in the region encoding the central domain of helper component-proteinase (HC-Pro) eliminate potato virus X/potyviral synergism. Virology 231:35-42.
Shattuck, V. I. 1992. UG1 turnip germplasm possessing resistance to turnip mosaic virus. HortScience 27(8) : 938-939.
Shukla, D. D., Frenkel, M. J. and Ward, C. W. 1991. Structure and function of the potyvirus genome with special reference to the coat protein coding region. Can. J. Plant Pathol. 13:178-191
Shukla, D. D. and Ward, C. W. 1988. Amino acid sequence homology of coat proteins as basis for identification and classification of the potyvirus group. J. Gen. Virol. 69:2703-2710
Shukla, D. D. and Ward, C.W. 1989a. Identification and classification of potyviruses on the basis of coat protein sequence data and serology. Arch. Virol. 106:171-200.
Shukla, D. D., and Ward, C. W. 1989. Structure of potyvirus coat proteins and its application in the taxonomy of the potyvirus group. Adv. Virus Res. 36:273-314.
Shukla, D. D., Ward, C. W., and Brunt, A. A. 1994. The Potyviride. CAB international. p.516. Cambridge.
Spall, V. E., Shanks, M., and Lomonossoff, G. P. 1997. Polyprotein processing as a strategy for gene expression in RNA viruses. Virology 8: 15-23.
Soumounou, Y., and Laliberté, J. F. 1994. Nucleic-acid binding properties of the P1 protein of turnip mosaic potyvirus produced in Escherichia coli. J. Gen. Virol. 75:2567-2573.
Tordo, V. M-J., Chachulska, A. M., Fakhfakh, M., Le Romancer, M., Robaglia, C. and Astier-Manifacier, S. 1995. Sequence polymorphism in the 5'' NTR and in the P1 coding region of potato virus Y genomic RNA. J. Gen. Virol. 76:939-949.
Tomlinson, J. A. 1987. Epidemiology and control virus diseases of vegetables. Ann. appl. Biol. 110:661-681.
Urcuqui-Inchima, S., Walter, J., Drugeon, G., German-Retana, S., Haenni, A.-L., Candresse, T., Bernardi, F., and Le Gall, O. 1999a. Potyvirus helper component-proteinase self-interaction in the yeast two-hybrid system and delineation of the interaction domain involved. Virology 258:95-99.
Urcuqui-Inchima, S., Anne-Lise, H., and Francoise, B. 2001. Potyvirus proteins:a wealth of functions. Virus Res. 74:157-175.
Vance, V. B., Berger, P. H., Carrington, J. C., Hunt, A. G., Shi, X. M., 1995. 5' Proximal potyviral sequences mediste potato virus X/potyviral synergistic dusease in transgenic tobacco. Virology 206:583-590.
Verchot, J., Herndon, K. L., and Carrington, J. C. 1992. Mutational analysis of the tobacco etch potyviral 35-kDa proteinase: identification of essential residues and requirements for autoproteolysis. Virology 190:298-306.
Verchot, J. and Carrington, J. C. 1995. Evidence that the P1 proteinase functions in trans as an accessory factor for genomic amplification. J. Virol. 69:3668-3674.
Verchot, J., and Carrington, J.C. 1995a. Debilitation of plant potyvirus infectivity by P1 proteinase-inactivating mutations and restoration by second-site modifications. J. Virol. 69:1582-1590.
Verchot, J., and Carrington, J. 1995b. Evidence that the potyvirus P1 proteinase functions in trans as an accessory factor for genome amplification. J. Virol. 69:3668-3674.
Wang, R. Y., Powell, G., Hardie, J., and Pirone, T. P. 1998. Role of the helper component in vector-specific transmission of potyviruses. J. Gen. Virol. 79:1519-1524.
Ward, C. W., and Shukla, D. D. 1991. Taxonomy of potyviruses:current problems and some solutions. Intervirology 32:269-296.
Yeh, S. D., Jan, F. J., Chiang, C. H., Doong, T. J., Chen, M. C., Chung, P. H. and Bau, H. J. 1992. Complete nucleotide sequence and genetic organization of papaya ringspot virus RNA. J. Gen. Virol. 73:2531-2541
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top