跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 22:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳玉樹
研究生(外文):Yu-Shu Chen
論文名稱:鹽分與乾旱逆境對烏山頂泥火山地區植物分佈之影響
論文名稱(外文):Effects of salt and drought stress on plant distribution in Wushanting Mud Volcanic areas
指導教授:廖麗貞廖麗貞引用關係
指導教授(外文):Li-Jen Liao
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:生物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:鹽分逆境乾旱逆境植物分佈烏山頂泥火山
外文關鍵詞:salt stressdrought stressplant distributionWushanting Mud Volcano
相關次數:
  • 被引用被引用:7
  • 點閱點閱:636
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以烏山頂泥火山地區全區優勢植物大花咸豐草(Bidens pilosa L. var. radiata Sch.)以及局部優勢植物鯽魚膽(Pluchea indica (L.) Less.),兩種於烏山頂泥火山地區不同分佈狀況的植物為實驗材料,除野外採樣外,另以不同泥漿比例(體積比)栽種控制組,並於種植一個月後進行乾旱處理,探討鹽分與乾旱逆境對其分佈的影響。
結果顯示,大花咸豐草野外樣品總蛋白質含量隨著旱季的持續略有下降,鯽魚膽則無此現象;脯氨酸的含量,大花咸豐草於不同樣點與不同時間都有變化,而鯽魚膽僅於不同樣點間有較大變化;總蛋白質電泳分析可以發現,大花咸豐草於樣點4到樣點8在77KD、55KD、40KD與26KD附近有明顯條帶出現,鯽魚膽則於50KD與26KD附近各出現一蛋白質條帶;大花咸豐草過氧化酶活性於實驗期間隨著旱季的持續而增加,鯽魚膽也有相同的情形,但不如大花咸豐草明顯;由過氧化酶IEF電泳分析發現,當兩種植物處於高鹽分與乾旱時,酸性的過氧化酶條帶會出現增加與增強的情形。
大花咸豐草於乾旱處理前,不同泥漿比例的控制組,雖然總蛋白質含量變化不大,但高泥漿比率處理組(大於50﹪),脯氨酸含量卻隨著時間大量增加至4000μg/g以上,之後即有植株死亡的現象,低泥漿比率處理組(小於33.3﹪)於乾旱處理後總蛋白質含量大量上升,但脯氨酸的含量並不如預期會於乾旱處理時上升,反而下降;總蛋白質電泳可發現大花咸豐草於前4次採樣期間,總蛋白質電泳的條帶數均呈現增加的情形,以55KD、40KD與26KD附近較為明顯,而鯽魚膽100﹪與75﹪泥漿組,第2次採樣時於26KD附近有另一明顯條帶,第5次採樣時則於30KD附近有另一條帶出現;控制組大花咸豐草過氧化酶活性於高泥漿比率(50﹪以上),明顯高於低泥漿比率(33.3﹪以下),且各處理內過氧化酶活性差可達7倍,鯽魚膽控制組過氧化酶活性的變化,乾旱處理前各處理間差異不大,乾旱處理後,100﹪與75﹪泥漿組過氧化酶活性增加量達40倍以上,而50﹪與25﹪泥漿組過氧化酶活性增加達8倍以上,0﹪泥漿組則僅有2倍;控制組過氧化酶IEF電泳亦發現酸性過氧化酶條帶於高鹽分與乾旱會出現增加與增強的情形。
過氧化酶活性與脯氨酸累積量跟植物的生長以及逆境的抗性有關,大花咸豐草與鯽魚膽,對於逆境的反應並不相同,特別是在過氧化酶活性與脯氨酸累積量方面,兩者有很大的不同其差異可能導致對環境適應上的不同,使得鯽魚膽僅能分佈於高鹽分但較潮濕的環境(泥火山周邊),而大花咸豐草則可以分佈於高鹽環境以外的所有區域。
Abstract
This research is based on two different plants were sampling from the peak of Wushanting Mud Volcanic areas. The plants mentioned in this abstract consist of Bidens pilosa, a widely sprawling plant in the area, and Pluchea indica, a regional dominant plant found in this mountain. Aside from taking the samples from Wushanting, different ratios of mud were added into the planting, and the situation of drought was simulated a month later, so as to analyze the impact of salt and drought on the distribution of these plants.
The result shows that the protein in Bidens pilosa sampled from the wild decreases slightly with the impact of drought, whereas Pluchea indica does not have this phenomenon. The amount of proline in Bidens pilosa alters with place and time, whereas the amount in Pluchea indica varies only with place. The total protein electrophoresis analysis for Bidens pilosa shows that a protein belt appears in places number 4 and 8 at 77KD, 55KD, 40KD, and 26KD. The analysis for Pluchea indica calls for a protein belt in 50KD and 26KD. Both Bidens pilosa and Pluchea indica demonstrate an increase of peroxidase as drought arrives, with the situation more apparent in Bidens pilosa. The results in peroxidase electrophoresis analysis show that when these two plants are situated under saline and water crisis situations, acid peroxidase belts appear to intensify.
Although the total amount of protein for different mud proportions of Bidens pilosa does not alter greatly before the dehydration, the amount of proline in high proportions of mud (above 50%) will augment to over 4000ug/g, then show signs of death. The protein in low mud groups (below 33.3%) increases greatly after dehydration, but the amount of proline decreases, instead of increasing as expected. From total protein electrophoresis, we can discover that the total protein electrophoresis belt in the first 4 sample collection periods, particularly apparent near 55KD, 40KD and 26KD. Pluchea indica 100% and 75% mud groups demonstrated an obvious belt during the second sample collection at 26KD, and another during the fifth sample collection at 30KD. The peroxidase activity in high mud groups (over 50%) of Bidens pilosa is evidently more prominent than in low mud groups (below 33.3%), and it could reach up to 7 times the difference within groups. The peroxidase activity changes within Pluchea indica showed little difference before and after dehydration. After dehydration, the peroxidase of 100% and 75% lava groups increased 40 times the original amount, and the peroxidase activity of 50% and 25% lava groups increased 8 times. As for the 0% group, the increase of only 2 times was found. From the peroxidase IEF electrophoresis, we have discovered that the acid peroxidase belt intensifies with the increase of salt and dehydration.
Peroxidase activity and proline affect the plants’ growth and their ability to resist tough environments, which in turn influences their adaptability of different surroundings. This research illustrates that Bidens pilosa and Pluchea indica show different reactions to difficult environments, particularly in the aspects of peroxidase activity and proline. Pluchea indica survives in highly saline areas (around the mud volcano) whereas Bidens pilosa distributes in non-saline environments.
目 錄
中文摘要.........................I
英文摘要.........................III
壹、前言.......................1
貳、前人研究.....................3
參、材料方法.....................11
一、樣點位置與概況................11
二、氣候概況...................14
三、實驗材料...................14
四、實驗方法...................16
肆、結果.......................22
一、土壤理化性質分析...............22
二、總量蛋白質..................29
三、總蛋白質電泳分析...............33
四、過氧化酶活性測定...............38
五、游離脯氨酸含量測定..............47
六、過氧化酶等電點電泳分析............50
伍、討論.......................58
陸、參考文獻.....................66
陸、參考文獻
王鑫、徐美玲、楊建夫。1988。台灣泥火山地形景觀。台灣省立博物館年刊 31:31-49。
古明萱。1996。高粱在鹽分逆境下之滲透調節作用。中華農藝 6:15-25。
朱德民。1979。植物缺水與脯氨酸之代謝。科學農業 27(7-8):197-202。
金叔芬。1995。大豆植株及癒傷組織對鹽分逆境之生理反應。國立中興大學植物學研究所碩士論文。中華民國。
林秋榮、陳益明。1991。逆境對植物之生理與分子生物學之研究。科學發展月刊 19:222-225。
林傳琦、高景輝。2000。細胞壁與鹽分逆境所抑制之生長。科學農業 48(7,8):169-175。
林傳琦、高景輝。2000。植物之氧化性傷害與鹽分逆境。科學農業 48(9,10):224-248。
林傳琦、高景輝。2001。脯胺酸與植物鹽分逆境。科學農業 49(7,8):27-31。
何希達、陳文松、劉萬發。1984。甘蔗葉片游離脯氨酸在乾旱處理下之累積。臺灣糖業研究所研究彙報105:1-12 。
侯金日、楊雅斯。2000。水分及鹽分逆境對咸豐草種子發芽。Chinese Agron. J. 10:199-208。
侯金日、楊雅絲、王淑敏。1999。不同光質對兩種鬼針草屬(Bidens)植物種子發芽之影響。中華民國雜草學會會刊 20:39-54。
高景輝、林安秋。1985。鹽性與植物生長。科學農業 33(11-12):365-368。
陳明賢。1999。泥岩地區適生草種耐鹽性之研究。國立中興大學水土保持學系碩士論文。中華民國。
陳榮銳、李冬齡。1984。同功過氧化酶與水稻癒合組織的分化。科學農業 32:172-179。
廖秀芬。1992。泥火山地區植群之研究。國立中興大學植物學研究所碩士論文。中華民國。
蔡如琪、黃士穎、羅筱鳳、陳榮芳。1997。溫度處理對甘藷葉片過氧化酶及塊根農藝性狀之影響。中華農藝 7(2):139-147。
劉依昌、羅筱鳳、陳榮芳。1997。乾、濕逆境對甘藷葉片蛋白質、過氧化酶及一些塊根性狀影響之研究。中國園藝43(2): 126-140。
羅筱鳳、黃士穎、陳瑞宏、林惠文、陳榮芳。1999。Differential responses in leaf antioxidant enzyme activities to waterlogging in two sweet potato cultivars. 中華農藝 9(2): 81-89。
Basu, R. and B. Ghosh. 1991. Polyamines in various rice (Oryza sativa) genotypes with respect to sodium chloride salinity. Physiol. Plant. 82: 575-581.
Bates, L. S., R. P. Waldren, and I. D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant and soil 39: 205-207.
Beffa, R., H. V. Martin, and P. E. Pilet. 1990. In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots. Plant Physiol. 94: 485-497.
Bohnert, H.J., D.E. Nelson and R.G. Jensen. 1995. Adaptations to environmental stresses. Plant Cell 7:1099-1111.
Buhl, M.R. and C.R. Stewart. 1983. Effect of NaCl on proline synthesis and utilization in excised barley leaves. Plant Physiol. 72:664-667.
Chang, Y. C. and T. M. Lee. 1999. High temperature-induced free proline accumulation in Gracilaria tenuistipitata (Rhodophyta). Bot. Bull. Acad. Sin. 40: 289-294.
Chen, C. H., L. M. Chen., C. C. Lin, and C. H. Kao. 2001. Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant science 160: 283-290.
Chen, L.-F. O., H.-F. Lo, T.-H. Chen, and L. Lee. 1992. Peroxidase Zymograms of sweet potato (Ipomoea batatas (L.) Lam.) grown under hydroponic culture. Bot. Bull. Academia Sinica 33: 247-252.
Delauney, A. J. and D. P. S. Verma. 1993. Proline biosynthesis and osmoregulation in plants. Plant J. 4(2): 215-223.
Dionisio-Sese, M. L. and S. Tobita. 1998. Antioxidant responses of rice seedings to salinity stress. Plant science 135: 1-9.
Erdei, L., Z. Szegltes, K. Barabas and A. Pestenacz. 1996. Responses in polyamine titer under osmotic and salt stress in sorghum and maize seedlings. J. Plant Physiol. 147: 599-603.
Flowers, T. J., P. F. Troke, and A. R. Yeo. 1977. The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28: 89-121.
Gasper, T., C. Penel, F. J. Castillo, and H. Greppin. 1985. Atwo-step control of basic and acidic peroxidases and its significance for growth and development. Physiol. Plant. 64: 418-423.
Gossett, D. R., E. P. Millhollon, and M. C. Lucas. 1994. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Corp Sci. 34: 706-714.
Grambow, H. J. and L. Schwich. 1983. The relationship between oxidase activity, peroxidase activity, hydrogen peroxide and phenol compounds in the degration of indole-3 acetic acid in vivo. Planta. 157: 131-137.
Handa, S., A. K. Handa., P. M. Hasegawa, and R. A. Bressan. 1986. Proline accumlation and the adaptation of cultured plant cell to water stress. Plant Physiol. 80: 938-945.
Jain, R. K., N. Maherchandani, V. K. Chowdhury, and S. Jain. 1990. Radiation- induced organogenesis and isoenzyme patterns in long term callus cultures of Datura ainnoxi. Ann.Bot. 65:659-663.
Kalir, A., G. Omri, and A. Poljakoff-Mayber. 1984. Peroxidase and catalase activity in leaves of Halimione portulacoides exposed to salinity. Physiol. Plant. 62: 238-244.
Kerepesi, I., G. Galiba and E. Banyai. 1998. Osmotic and salt stresses induced differential alteration in water-soluble carbohydrate content in wheat seedlings. J. Agric. Food Chem. 46: 5347-5354
Li, T.-C., T.-Y. Feng, W.-S. Chen, and Z.-H. Liu. 2001. The acute effect of copper on the level of indole-3-acetic acid and lignin in peanut root. Aust. J. Plant physiol 28: 329-334.
Lin, C. C. and C. H. Kao. 1996. Proline accumulation is associated with inhibition of rice seeding root growth caused by NaCl. Plant Sci. 114: 121-128.
Liu, Z.-H., H.-Y. Liu, and H.-Y. Wang. 1996. Effect of light on endogenous indole-3-acetic acid, peroxidase and indole-3-acetic acid oxidase in soybean hypocotyls. Bot. Bull. Acad. Sin. 37: 113-119.
Lo, H. F. et al. 1999. Differential responses in leaf antioxidant enzyme activities to waterlogging in two sweet potato cultivars. Chinese Agron. J. 9: 81-89.
Lou, E. K. and D. V. Basile. 1987. Specific peroxidase isozymes are correlated with organogensis. Plant Physiol. 84: 99-106.
Moftah, A. E. and B. E. Michel. 1987. The effect of sodium chloride on solute potential and proline accumulation in soybean leaves. Plant Physiol. 83: 238-240.
Munns, R. 1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell and Environment. 16: 15-24.
Neumann, P. 1997. Salinity resistance and plant growth revisited. Plant, Cell and Environment. 20: 1193-1198.
Pao, C.-I. And P. W. Morgan. 1988. Patterns of total peroxidase activity and isozyme complement during development of selected maturity genotypes of sorghum. Corp Sci. 28: 531-535.
Rabe, E. 1990. Stress physiology: The functional significance of the accumulation of nitrogen-containing compounds. J. hortic. sci. 65: 231-243.
Rengel, Z. 1992. The role of calcium in salt toxicity. Plant, Cell and Environment 15: 625-632.
Roy-Macauley, H., Y. Zuily-Fodil, M. Kidric, A. T. Pham Thi, and J. Vieira da Silva. 1992. Effect of drought stress on proteolytic activities in Phaseolus and Vigna leaves from sensitive and resistant plants. Physiol. Plantrum 85: 90-96.
Salin, M. L. 1987. Toxic oxygen species and protective systems of the chloroplast. Physiol. Plant. 72: 681-689.
Saradhi, P. P., S. Arora, and K. V. S. K. Prasad. 1995.Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem. Biophys. Res. Commun. 290: 1-5.
Seeman, J. R. and Critchley, C. (1985) Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta 164: 151-162.
Siddique, M. R. B., A. Hamid, and M. S. Islam. 2000. Drought stress effects on water relations of wheat. Bot. Bull. Acad. Sin. 41: 35-39.
Siegel, B. Z. 1993. Plant peroxidase — an organismic perspective. Plant Growth Regulation. 12: 303-312.
Singh, N. K., A. K. Handa,, P. M. Hasegawa, and Bressan, R. A. 1985. Protein associated with adaptation of cultured Tobacco cells to NaCl. Plant Physiol. 79: 126-137.
Smirnoff, N. and S. V. Colombe. 1988. Drought influences the activity of enzymes of the chloroplast hydrogen peroxide scavenging system. J. Exp. Bot. 39: 1097-1108.
Soussi, M., A. Occana and C. Lluch. 1998. Effects of salt stress on growth, photosynthesis and nitrogen fixation in chickpea (Cicer arietinum L.) J. Exp. Bot. 49:1329-1337.
Van Huystee, R. B., C. Breda, P. Sesto, N. Beopouolos and R. Esnault. 1990. Measurement and detection of peroxidase. Plant Sci. 69: 19-26.
Virabalin R., B. Kositsup and H. Punnapayak. 1993. Leaf protein concertrate from water hyacinth.31: 207-209.
Wang, C.-S., S.-M. Lin, and S.-L. Wei. 1999. A stress-inducible protein associated with desiccation in lily pollen. Bot. Bull. Acad. Sin. 40: 199-205.
Wolfgang, F. O., R. Kraus, S. Hirreli, B. Benz., R. Volpert, and E. F. Elstner. 1992. Comparison of the enzymatic activities of dehydro-ascorbic acid reductase, glutathion reductase, catalase, peroxidase and superoxide dismutase of healthy and damaged spruce needle (Picea abies (L.) Karst.). J. Plant Physiol. 139: 742-748.
Wu, J. T., S. J. Chang, and T. J. Chou. 1995. Intracellular proline accumulation in some algae exposed to copper and cadmium. Bot. Bull. Acad. Sin. 36: 89-93.
YE XS,Pan SQ,Kuc J. 1990. Activity, isoenzyme pattern, and cellular localization of peroxidase as related to systemic resistance of tobacco to blue mold(Peronospora tabacina) and to tobacco mosaic virus. Phytopathology. 80:1295-1299.
Yoshiba, Y., T.Kiyosue, K. Nakashima, K. Yamaguchi-Shinozaki and K. Shinozaki. 1997. Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol. 38(10): 1095-1102.
Zhang, J. and M. B. Kirkham.1994. Drought-stress-induced changes in activites of superoxide dismutase, catalase, and peroxidase in wheat species. Plant cell physiol. 35(5): 785-791.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top