跳到主要內容

臺灣博碩士論文加值系統

(3.236.225.157) 您好!臺灣時間:2022/08/16 00:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王翔怡
研究生(外文):Hsiang-Yi Wang
論文名稱:台灣現有落花生品系快速鑑定系統之建立
論文名稱(外文):Establishment of Rapid Identification System of Peanut Lines in Taiwan
指導教授:廖麗貞廖麗貞引用關係
指導教授(外文):Li-Jen Liao, Ph. D.
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:生物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:69
中文關鍵詞:落花生品種鑑定逢機增殖多型性DNASDS-PAGE
外文關鍵詞:peanutSpecies identificationRAPDSDS-PAGE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
物種的鑑定有助於種原資料的收集,亦可保護育種者的智慧財產權。本研究以25個台灣現有落花生品系的乾燥成熟種子為試驗材料,以SDS-PAGE蛋白質電泳圖譜與逢機增殖多型性DNA (random amplified polymorphic DNA, 簡稱RAPD) 標誌進行落花生品系的鑑定。蛋白質圖譜分析的結果,產生的多型性不多,但分子量19.0 KDa為Virginia bunch型的特有分子標誌,可將立枝仔與其他品系鑑別;分子量20.0 KDa為Virginia runner型的特有分子標誌,可將澎湖二號、澎湖三號以及大冇與其他品系鑑別,然而同一植物型態之間各品系則無法區別。
以10個逢機引子對25個落花生品系進行RAPD分析,直接偵測DNA序列的差異,共產生184條DNA條帶,其中有128個分子標誌在品系間具有多型性,其中有19個分子標誌為特定品系的特有標誌。RAPD分子標誌技術操作簡易、快速、安全,以乾燥成熟種子作為試驗材料,可節省大量時間,唯宜降低萃取DNA時高含油量的干擾,提升萃取DNA的純度,提高RAPD反應的再現性,以達快速鑑定落花生品系之目的。

Species identification has contribution to the collection of germplasm information and can also protect intellectual property of plant breeders. The research is to identify 25 peanut lines available in Taiwan by SDS-PAGE protein electrophoresis and random amplified polymorphic DNA (RAPD) markers using dry mature seeds. There is not much polymorphism of the outcome of protein profile analysis. However, 19.0 KDa protein molecular marker is specific to peanut of Virginia bunch type, and can identify line Lichitsai from the rest of 25 peanut lines tested. And 20.0 KDa protein molecular marker is specific to peanut of Virginia runner type, and can identify line Ponghu 1, Ponghu 2 and Taimo from the rest of 25 peanut lines tested. Nevertheless, peanut lines within the same morphology type cannot be identified by protein profiles.
Ten random primers were used to detect differences of DNA sequence of 25 peanut lines by RAPD reactions. Hundred and eighty four DNA fragments were produced, and 128 molecular markers among them were polymorphic between different lines. And 19 molecular markers were unique to specific lines. RAPD technique is quick, safe and easy to operate. It will save much time using dry mature seeds as experiment material as long as reducing oil content of DNA extraction from seeds in order to raise DNA purity and enhance reduplication of RAPD reaction.

壹、前言....................... 1
貳、前人研究..................... 3
參、材料與方法.................... 6
一、材料..................... 10
二、方法..................... 10
三、資料分析................... 18
肆、結果....................... 20
一、蛋白質圖譜分析................ 20
二、RAPD分子標誌分析............... 20
伍、討論....................... 60
陸、參考文獻..................... 64

王昭月。1995。同功異構酵素與逢機增殖多型性DNA標誌在番椒品種鑑別之研究。國立中興大學園藝系研究所碩士論文。
王昭月、劉新裕、宋麗梅、高介志。1993。山藥不同品系間之變異性研究。中華農業研究。42 (3):280-291。
邱金春。1997。逢機增殖多型性DNA標誌在蕙蘭鑑別之研究。國立中興大學園藝系研究所碩士論文。
林吟珊。2001。逢機增殖多型性DNA標記在落花生種原親原關係鑑定之研究。國立高雄師範大學生物科學研究所碩士論文。
林順福。1997。落花生。臺灣雜糧作物品種圖說第三輯。p. 82-83。
范明仁、羅舜芳、王昭月、許庭榮、曹文隆、楊金興、鄭耀星。1999。台灣落花生種原親緣關係之研究Ⅱ. 應用RAPD進行落花生種原親緣關係之研究。中華農業研究。48 (2):67-85。
胡敏夫、賴永昌、劉新裕。1994。山葵種原鑑定與農藝特性觀察。中華農業研究。43 (3):302-307。
許宏德、陳成、陳述、胡凱康。1999。利用RAPD評估綠豆種原之變異。中華農學會報。1 (4):353-369。
黃明得。1994。落花生。雜糧作物各論(二)。豐年社。台北。第13章p. 1045-1114。
黃勝忠、蔡奇助。1997。RAPD分子標誌在落花生品種鑑別之應用。台中區農業改良場研究彙報。57:11-22。
莊榮輝。1999。蛋白質純化檢定。生物技術方法 卷一。台北。第四章p. 79-84。
張同吳。1996。台灣落花生品種(系)之遺傳變異。國立中興大學農藝學研究所碩士論文。
楊藹華、林怡廷。2001。如何利用分子生物技術鑑定作物品種。台南區農業專訊。38:10-14。
蔡右任。2000。台灣茶樹同功異構酶之變異與親緣相關之研究。臺灣茶葉研究彙報。19:51-59。
潘秋燕。2000。文心蘭懸浮細胞系之建立與體細胞變異之誘導。國立高雄師範大學生物科學研究所碩士論文。
Ahmad, F. and Slinkard, E. 1992. Genetic relationships in the genus Cicer L. as revealed by polyacrylamide gel electrophoresis of seed storage proteins. Theor. Appl. Genet. 54: 688-692.
Botstien, D., White, R.L., Skolmick, M., and Davis, R.W. 1980. Construction of genetic linkage map in man using restriction fragment length polymorphism. Am. J. Genet. 32: 314-331.
Bulinska-Radomska, Z., and Lester, R.N. 1988. Intergenic relationships of Lolium, Festuca and Vulpia (Poaceae) and their phylogeny. Plant Syst. Evol. 159: 217-227.
Cubero, J.I., Millan, T., Osuna, F., Torres, A.M., Cobos, S. 1996. Varietal identification in Rosa by using isozyme and RAPD markers. Wageningen : International Society for Horticultural Science. 424: 261-264.
Doldi, M.L., Vollmann, J. and Lelley, T. 1997. Genetic diversity in soybean as determined by RAPD and microsatellite analysis. Plant Breeding. 116: 331-335.
Dos Santo, J.B., Nienhuis, J., Skroch, P., Tivang J., and Slocum, M.K. 1994. Comparison of RAPD and RFLP genetic markers in determing genetic similarity among Brassica oleracea L. genotypes. Theor. Appl. Genet. 87: 909-915.
Duvall, M.R., and Biesboer, D.D. 1989. Comparisons of electrophoretic seed protein profiles among North America populations of Zizania. Biochem. Syst. Ecol. 17: 39-43.
Escribano, M.R., Santalla, M., Casquero P.A., and De Ron, A.M. 1998. Patterns of genetic diversity in landraces of common bean (Phaseolus vulgaris L.)
Halward, T.M., Stalker, H.T., Larue, E.A., and Kochert, G. 1991. Genetic variation detectable with molecular markers among unadapted germ-plasm resources of cultivated peanut and related wild species. Genome. 34: 1013-1020.
Halward, T., Stalker, T., LaRue, E., and Kochert, G. 1992. Use of single-primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.) Plant Molecular Biology. 18: 315-325.
Huang, H., and Layne, D.R. 1997. Using isozyme polymorphisms for identifying and assessing genetic variation in cultivated pawpaw. J. Amer. Soc. Hort. Sci. 122(4): 504-511.
Galvan, M.Z., Aulicino, M.B., Garcia Medina, S., and Balatti, P.A. 2001. Genetic diversity among Northwestern Argentinian cultivars of common bean (Phaseolus vulgaris L.) as revealed by RAPD markers. Genetic Resources and Crop Evolution. 48: 251-260.
Grieshammer, U., and Wynne, J.C. 1990. Isozyme variability in mature seeds of U.S. peanut cultivars and collections. Peanut Science. 18: 72-75.
Griffin, J.D., and Palmer, R.G. 1995. Variability of thirteen isozyme loci in the USDA soybean germplasm collections. Crop. Sci. 35: 897-904.
Igrejas, G., Guedes-Pinto, H., Carnide, V., and Branlard, G. 1999. Seed storage protein diversity in triticale varieties commonly grown in Portugal. Plant Breeding. 118: 303-306.
Khan, M.A. 1992. Seed-protein electrophoretic patterns in Brachyp odium P. Beauv. Species. Ann. Bot. (London), 70: 61-68.
Klozova, E., Turkova, V., Smartt, J., Pitterova, K., and Svachulova, J. 1983. Immunochemical characterization of seed proteins of some species of the genus Arachis L. Biol. Plant. 25: 210-218.
Ladizinsky, G., and Hymowitz, T. 1979. Seed protein electrophoresis in taxanomic and evolutionary studies. Theor. Appl. Genet. 54: 145-151.
Lanham, P.G., Foster, B.P., and McNicol, P. 1994. Seed storage protein variation in Arachis species. Genome. 37: 487-495.
McDonald, M.B., Elliot, L.J., and Sweeney, P.M. 1994. DNA extraction from dry seeds for RAPD analyses in varietal identification studies. Seed Sci.& Technol. 22: 171-176.
Navot, N., and Zamir, D. 1987. Isozyme and seed protein phylogeny of the genus Citrullus (Cucurbitaceae). Plant Syst. Evol. 156: 61-67.
Oleo, M., Van Geyt, J.P.C., and Jacobs, M. 1992. Enzyme and storage protein electrophoresis in varietal identification of sugar beet. Theor. Appl. Genet. 85: 379-385.
Panda, R.C., Kumar, O.A., and Rao, K.G.R. 1986. The use of seed protein electrophoresis in the study of phylogenetic relationships in Chili pepper (Capsicum L.). Theor. Appl. Genet. 72: 665-670.
Sarkar, R., and Raina, S.N. 1992. Assessment of genome relationships in the genus Oryza L. based on seed-protein profile analysis. 85: 127-132.
Sathaiah, V., and Reddy, T.P. 1985. Seed protein profiles of castor (Ricinus communis L.) and some Jatropha species.
Singh, A.K., Gurtu S., and Jamb Nathan, R. 1994. Phylogenetic relationships in the Arachis based on seed protein profiles. 74: 219-225.
Singh, A.K., Sivaramakrishnan, S., Menghesha, M.H. and Ramaiah, C.D. 1991. Phylogenetic relationships in section Arachis based on seed protein profiles. Theor. Appl. Genet. 82: 593-597.
Souza, E., and Sorrells. M.E. 1991a. relationships among 70 north American oat germplasms: I. Cluster analysis using quantitative characters. Crop. Sci. 31: 599-605.
Stiles, J.I., Lemme, C., Sondur, S., Morshidi, M.B., and Manshardt, R. 1993. Using random amplified polymorphic DNA for evaluating genetic relationships among papaya cultivars. Theor. Appl. Genet. 85: 697-701.
Tatineni, V., Cantrell, R.G., and Davis, D.D. 1996. Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPD markers.
Tingey, S.V., and P. del Tufo, J. 1993. Genetic analysis with random amplified polymorphic DNA markers. Plant Physiol. 101: 349-352.
Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee, T.V.D., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and Zabeau, M. 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acids. Res. 23(21): 4414-4427.
Wachira, F.N., Waugh, R., Hackett, C.A., and Powell, W. 1995. Detection of genetic diversity un tea (Camellia sinensis) using RAPD markers. Genome. 38: 201-210.
Willams, J.G.K., Kubelik, A.R., Livak, K.j., Rafalski, J.A., and Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research. 18(22): 6531-6535.
Yang, X., and Quiros, C. 1993. Identification and classification of celery cultivars with RAPD markers. Theor. Aappl. Genet. 86: 205-212.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top