跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 12:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭雅鈺
研究生(外文):Ya-Yu Cheng
論文名稱:南仁山溪流著生性藻類物種組成、生長量與速率之研究
論文名稱(外文):Species composition, growth rate and productivity of periphyton in the streams of Nan-jen-shan Nature Reserve
指導教授:梁世雄梁世雄引用關係
指導教授(外文):Shih-Hsiung Liang
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:生物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:64
中文關鍵詞:著生性藻類物種組成生長量生長速率溪流南仁山
外文關鍵詞:periphytonspecies compositionproductivitygrowth ratestreamNan-jen-shan Nature Reserve
相關次數:
  • 被引用被引用:9
  • 點閱點閱:345
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
為增加對台灣溪流著生性藻類之物種組成、生長速率及影響其生長量因子之瞭解,本研究自2000年12月至2001年11月,在南仁山區吧沙加魯溪(22°41''15N 120°18''05E)上游兩條支流,分別於高(80 ~ 100%)、中(40 ~ 60%)與低(0 ~ 20%)等三種不同遮蔽度比例之樣點,進行著生性藻類之培養調查。在為期一年的採樣中,共發現矽藻12屬29種,綠藻2屬2種,其中有3種僅能鑑定至屬。不論季節、河流與遮蔽度差異,所有樣點之物種組成均以矽藻為主,其中最優勢物種為Cocconeis placentula var. euglypta。培養初期藻類細胞數量不多,但物種歧異度卻顯示相對最高值。物種歧異度在不同季節均約在第11 ~ 21天出現最高值(H'' = 0.13 ~ 0.91),而後再隨生長天數增加而減少。依群集分析之物種組成枝狀圖(dendrogram)判斷,南仁山溪流著生藻類物種組成之時空變化,受到季節與遮蔽度之影響較溪流明顯。依據藻類葉綠素a含量發現,溪畔植物遮蔽溪流程度越低生長速率越快,但不論遮蔽程度之高低,最高生長量之數值均出現在固定範圍內(葉綠素a含量2.5 ~ 3μg/cm2)。經由長期(約170天)培養發現,高遮蔽度樣點下藻類達生長高峰所需天數估計約在第140天才達到最高值。吧沙加魯溪藻類生長速率受遮蔽度影響,但與本研究中所測量之環境因子相關性不大。與北美地區之溪流比較,吧沙加魯溪有明顯較高的營養鹽含量,但是,著生性藻類之最高生產量,則大致可維持穩定(2.5 ~ 3μg /cm2)。物種組成之差異或許是造成此現象之可能原因。此外,不同的底質可能影響附著藻類之物種組成,因此,利用或採集同種著生基質,在未來比較溪流藻類組成之研究上應有其必要。
Periphyton was incubated under high(80 ~ 100 %), medium(40 ~ 60 %), and low(0 ~ 20 %)canopy ratio in two tributaries of Pasagalu stream in Nan-jen-shan Nature Reserve from December, 2000 to November, 2001 to investigate the species composition, growth rate, and influence factors of benthic algae in lotic waters of Taiwan. Twenty-nine species in twelve genus of diatom and two species in two genus of green algae was identified in this annual study. Despite the difference in season, tributaries, and canopy types, silicon algae is dominant in species composition, with the major species of Cocconeis placentula var. euglypta. The total cell number of algae is not abundance; however, the species diversity is high during the early stage of periphyton incubation. In different seasons, the highest value of species diversity is commonly appeared in the 11 — 21 incubation days, but gradually decreases in the following collections. Based on the dendrogram of cluster analysis, the effects of season and canopy types on the spatio-temporal variation of species composition for benthic algae is more significant than tributary in Pasagalu stream. The chlorophyll a concentration is increase in accordance with the decreasing of riparian canopy. However, the maximum chlorophyll a concentration is recorded between 2.5 — 3 μg/cm2 in spite of the canopy ration. Through the observation of a long-term culture, approximately 140 incubation days is estimated for reaching the maximum chlorophyll a concentration under the condition of high riparian canopy. Although the riparian canopy is important, the other environmental factors, like flow velocity, nutrient content, did not show strong correlation with the growth rate in Pasagalu stream. Nutrient content in Pasagalu stream is higher compared to those in North America; however, periphyton production is maintained relatively stable in the former one. Difference in species composition maybe attributed to the higher nutrient but lower periphyton production in Pasagalu stream, which is varied from the studies documented from North America. Moreover, the selected materials for algal colonization will also affect the species composition and growth rate of periphyton. Thus, adopt same material for periphyton colonization for studying or comparing species composition of benthic algae in stream is necessary in the future.
中文摘要
英文摘要
目錄
壹、前言……………………………………………………………………1
貳、材料與方法……………………………………………………………5
一、野外採集………………………………………………….…………5
(一)樣區特徵………………………………………………..………5
(二)樣點設定………………………………………………..………8
(三)採樣方法…………………………………………………..……8
1.季節採樣……………………………………………………….8
2.長期採樣……………………………………………………….8
二、藻類樣本分析………………………………………………………10
(一)物種計數與鑑定………………………………………………10
(二)葉綠素a測定………………………………....………………10
三、環境因子測量…………………………………..………………..…11
四、資料分析…………………………………..………………..………12
(一)物種組成與細胞數量……………..………………….………12
(二)葉綠素a含量與生長速率………..………………….………13
1.季節採樣………………………………….…………………..14
(1)河流、光照與天數之影響….…………………………..14
(2)生長速率模式及生產量…………………………..…….14
2.長期採樣……………………………………………………...15
(三)環境測項……………………………………………………....15
參、結果…………………………………………………..………………16
一、藻類樣本分析……………………………………..……….………16
(一)物種計數與鑑定…..………………………………….………16
1.物種組成變化……..…………………………..………………16
2.物種歧異度……..……………………………..………………16
3.物種組成之時間變化..………………………..………………21
4.物種組成相似度……………………..………………………..27
(二)葉綠素a含量與生長速率模式……………………………..27
1.季節採樣…………………………………………………...…27
(1)河流、光照與天數對藻類生長的影響…………………27
(2)生長速率模式及生產量…………………………………34
2.長期採樣…………………………………………….……..…44
(1)左側支流……………………………………….……..…44
(2)右側支流……………………………………….……..…45
二、影響藻類生長因子……………………………………….……..…45
(一)環境因子………………………………….……….……..…45
肆、討論…………………………………………………………………50
一、藻類物種組成………………………………………………………50
二、物種歧異度與細胞數量……………………………………………51
三、藻類生長量…………………………………………………………52
四、影響藻類生長因子…………………………………………………54
(一)著生底質……………………………………………………54
(二)營養鹽含量….………………………..…………….………54
(三)其他環境因子………………………………………………55
五、未來研究之建議……………………………………………………55
伍、結論………………………………………………………………….57
陸、參考文獻…………………………………………………………….59
王瑋龍,陳伯中。 2000。 台灣淡水矽藻名錄。中華藻類學會。
康利國。 2001。 大甲溪附著性先驅矽藻胞外物質之研究. 國立中興大學植物學系碩士論文.
黃乙玉。 2002。 亞熱帶森林上游溪流-哈盆溪食物網之研究. 台灣大學動物系研究所碩士論文初稿.
黃雪娟。 1992。 新店溪上游水質對附生矽藻之影響研究. 國立台灣大學植物學研究所碩士論文.
詹智全。 2001。 國內水庫優養化評估因子及藻類指標間之相關性分析研究. 國立中興大學環境工程學系碩士論文.
劉欣穎。 1995。 以臭氧降低優養化水源消毒副產物生成之初探. 私立東海大學環境科學研究所碩士論文.
賴雪端。 1984。 大甲溪與烏溪流域之淡水矽藻. 國立中興大學植物學系碩士論文.
賴雪端。 1997。 台灣本土性底棲藻類作為河川水質生物指標之研究. 國立中興大學植物學系博士論文.
Admiraal, W., and H. Peletier. 1979. Influence of organic compounds and light limitation on the growth rate of estuarine benthic diatoms. Br. Phycol. J. 14 : 197-206.
Allan, J. D. 1995. Stream Ecology:structure and function of running waters, p.p.83-108. Chapman & Hall, London, U.K.
Antoine, S. E., and K. Benson-Evans. 1983. The effect of light intensity and quality on the growth of benthic algae. I. Phytopigment variations. Arch. Hydrobiol. 98, 299-306.
APHA, AWWA, and WEF. 1995. Standard methods for the examination of water and wastewater 19th edition, APHA, Washington.
Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs. Sci. 199 : 1302-1310.
Delong, M. D., and M. A. Brusven. 1992. Patterns of periphyton chlolophyll a in an agricultural nonpoint source impacted stream. Water Resources Bull. 28(4) : 731-741.
Elser, J. J., E. R. Marzolf, and C. R. Goldman. 1990. Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America : a review and critique of experimental enrichments. Can. J. Fish. Aquat. Sci. 47 : 1468-1477.
Elwood, J. W., J. D. Newbold, A. F. Trimble, and R. W. Stark. 1981. The limiting role of phosphorus in a woodland stream ecosystem : Effects of P enrichment on leaf decomposition and primary producers. Ecol. 62 : 146-158.
Feminella, J. W., M. E. Power and V. H. Resh. 1989. Periphyton responses to invertebrate grazing and riparian canopy in three northern California coastal streams. Freshwater Biol. 22 : 445-457.
Gregory, S. V. 1980. Effects of light, nutrients, and grazing on periphyton communities in streams. PhD. Dissertation, Oregon State University, Corvallis. (cited in Murphy M. L.. 2001. Primary production. Pages 144-168 in R. J. Naiman and R. E. Bilby, editors. River ecology and Management. Springer-Verlag , New York, USA.)
Gregory, S. V., G. A. Lamberti, D. C. Erman, K. V. Koski, M. L. Murphy, and J. R. Sedell. 1987. Influence of forest practices on aquatic production. Pages 233-255 in E.O. Salo and T.W. Cundy, eds. Streamside management : Forestry and fishery interactions. Institute of Forest Resources Contribution Number 57 , University of Washinton, Seattle, Washington, U.S.A..
Hansmann, E. W. 1969. The effects of logging on periphyton communities of coastal streams. Ph.D. Thesis. Oregon State Univ., Corvallis, Oreg. 120p. (cited in Stockner, J. G. and K. R. S. Shortreed. 1976. Autotrophic production in Carnation Creek, a coastal rainforest stream on Vancouver island, British Columbia. J. Fish. Res. Board Can. 33 : 1553-1563.)
Hill, W. R. and A. W. Knight. 1988. Nutrient and light limitation of algae in two northern California streams. J. Phycol. 24 : 125-132.
Hill, W. R. and B. C. Harvey. 1990. Periphyton responses to higher trophic levels and light in a shaded stream. Can. J. Fish. Aquat. Sci. 47 : 2307- 2314.
Hill, W. R., M. G. Ryon, and E. M. Schilling. 1995. Light limitation in a stream ecosystem:Response by primary producers and consumers. Ecol. 76 : 1297-1309.
Kann, J. and C. M. Falter. 1989. Periphyton as indicators of enrichment in Lake Pend Oreille, Idaho. Lake and Reservoir Management 5 : 39-48.
Keithan, E. D. and R. L. Lowe. 1985. Primary productivity and spatial structure of phytolithic growth in streams in the Great Smoky Mountains National Park. Hydrobiologia 123 : 59-67.
Lamberti, G. A., S. V. Ashkenas, S. V. Gregory, A. D. Steinman, and C. D. McIntire. 1989. Productive capacity of periphyton as a determinant of plant-animal interactions in streams. Ecol. 70 : 1840-1856.
Lowe, R. L., S. W. Golladay and J. R. Webster. 1986. Periphyton response to nutrient manipulation in streams draining clearcut and forested watersheds. North Amer. Benthol. Soc. 5(3) : 221-229.
Marker, A. F. 1976. The benthic algae of some streams in southern England. I. Biomass of the epilithon in some small streams. J. Ecol. 64 : 343-358.
McConnell, W. J., and W. F. Sigler. 1959. Chlorophyll and productivity in a mountain river. Lomnol. Oceanogr. 4 : 335-351.
McIntire, C. D. 1973. Periphyton dynamics in laboratory streams : A simulation model and its implications. Ecol. Monogr. 43 : 399-420.
McIntire, C. D. and H. K. Phinney. 1965. Labortatory studies of periphyton production and community metabolism in lotic environments. Ecol. Monogr. 35 : 237-258.
Moor, J. W. 1972. Composition and structure of algal communities in a tributary stream of Lake Ontario. Can. J. Bot. 50 : 1663-1674.
Murphy, M. L. 2001. Primary production. Pages 144-168 in R. J. Naiman and R. E. Bilby, eds. River ecology and Management. Springer-Verlag, New York, U.S.A..
Murphy, M. L. and J. D. Hall. 1981. Vaired effects of clear-cut logging on predators and their habitat in small streams of the Cascade Mountains. Oregon. Can. J. Fish. Aquat. Sci. 38 : 137-145.
Naiman, R. J. 1983. The annual pattern and spatial distribution of aquatic oxygen metabolism in boreal forest watersheds. Ecol. Monogr. 53 : 73-94.
Odum, H. T. 1957. Trophic structure and productivity of Silver Springs, Florida. Ecol. Monogr. 27 : 55-112.
Pactrick, R. 1961. A study of the numbers and kinds of species found in rivers in eastern United States. Proc. Acad. Nat, Sci., Philadelphia 113 : 215-58.
Peterson, B. J., J. E. Hobbie, M. A. Lock, T. E. Ford, J. R. Vestal, V. L. McKinley. 1985. Transformation of a tundra river from heterotrophy to autotrophy by addition of phosphorus. Sci. 22 : 1383-1386.
Round, F. E. 1964. The ecology of benthic algae, in Algae and Man, (ed D.F. Jackson), Plenum Press, New York, p.p.138-184. (cited in Allan, J. D. 1995. Stream Ecology:structure and function of running waters, p.p.84. Chapman & Hall, London, U.K.)
Sheath, R. G. and K. M. Cole. 1992. Biogeography of stream macroalgae in North America. J. Phycol. 28 : 448-460.
Sherman, B. J. and H. K. Phinney. 1971. Benthic algal communities of the Metolius River. J. Phycol. 7 : 269-273.
Shortreed, K. R. S. and J. G. Stockner. 1983. Periphyton biomass and species composition in a coastal rainforest stream in British Columbia:effects of environmental changes caused by logging. Can. J. Fish. Aquat. Sci. 40 : 1887-1895.
Steinman, A. D. and G. A. Lamberti. 1996. Biomass and pigments of benthic algae. Pages 295-313 in F. R. Hauer and G. A. Lamberti, eds. Methods in stream ecology. Academic press, Inc.
Stevenson, R. J., M. L. Bothwell, and R. L. Lowe. 1996. Algal Ecology:freshwater benthic ecosystems, p.p.31-56. Academic Press, California, U.S.A.
Stockner, J. and F. Armstrong. 1971. Periphyton of the experimental lakes area, northwestern Ontario. J. Fish. Res. Board Can. 28(2) : 215-229.
Stockner, J. G. and K. R. S. Shortreed. 1976. Autotrophic production in Carnation Creek, a coastal rainforest stream on Vancouver island, British Columbia. J. Fish. Res. Board Can. 33 : 1553-1563.
Stockner, J. G. and K. R. S. Shortreed. 1978. Enhancement of artotrophic production by nutrient addition in a coastal rainforest stream on Vancouver Island. J. Fish. Res. Board Can. 35 : 28-34.
Sumner, W. T. and S. G. Fisher. 1979. Periphyton production in Fort River, Massachusetts. Freshwater Biol. 9 : 205-212.
Tilley, L. J. and W. L. Haushild. 1975. Use of productivity of periphyton to estimate water qulity. J. WPCF 47(8) : 2157-2171.
Wallace, J. B., T. F. Cuffney, S. L. Eggert, and M. R. Whiles. 1997. Stream organic matter inputs, storage, and export for Satellite Branch at Coweeta Hydrologic Laboratoty, North Carolina, USA. J. North Amer. Benthol. Soc. 16 : 67-74.
Watson, S., E. McCauley, and J. A. Downing. 1992. Sigmoid relationships between phosphorus, algal biomass, and algal community structure. Can. J. Fish. Aquat. Sci. 49 : 2605-2610.
Wetzel, R. G. 1975. Limnology. W.B. Saunders, Philadelphia, Pennsylvania, U.S.A.. (cited in Murphy M. L.. 2001. Primary production. Pages 144-168 in R. J. Naiman and R. E. Bilby, editors. River ecology and Management. Springer-Verlag , New York, USA.)
Wetzel, R. 1983. Limnology, 2nd edn, Saunders, New York. (cited in Allan, J. D. 1995. Stream Ecology:structure and function of running waters, p.p.84. Chapman & Hall, London, U.K.)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊