跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/14 13:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾淑珍
論文名稱:溫度及共同溶劑效應影響前鎮河底泥疏水性有機污染物分佈之研究
論文名稱(外文):Temperature and Cosolvent Effects on the Distribution of Organic Contaminants in the Sediment of Chien-Chen River
指導教授:陳士賢陳士賢引用關係
指導教授(外文):Colin S. Chen
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:生物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:76
中文關鍵詞:共同溶劑效應底泥吸附係數多環芳香族碳氫化合物疏水性有機污染物
外文關鍵詞:cosolvent effectsedimentsorption coefficientpolynuclear aromatic hydrocarbonshydrophobic organic contaminants
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
河川底泥在河川中扮演著儲存槽的角色,許多疏水性有機污染物如多環芳香族碳氫化合物(polynuclear aromatic hydrocarbons, PAHs),最終都會沉積在底泥中。河川底泥受到有機性毒性物質的污染愈來愈受到重視。對疏水性有機污染物而言,由於它們較易被底泥所吸附,在環境中不易分解、具有毒性與高生物累積性,因此,吸附行為成為影響其在環境中傳輸宿命的重要機制,本研究以前鎮河底泥為材料,探討吸附於底泥之PAH化合物在受溫度及共同溶劑效應影響下於固/液相中分佈之現象。
本研究第一階段實驗在了解前鎮河底泥的污染分佈特性,結果顯示底泥中主要的PAHs污染物為 phenanthrene和anthracene。其中以近高雄縣、市交界處之媽祖港橋採樣點污染物含量phenanthrene(168.1mg/Kg, dry wt.)和anthracene(139.0mg/Kg,dry wt.)要比其餘四處採樣點平均含量phenanthrene(26.08mg/Kg,dry wt.)和(anthracene20.16mg/Kg,dry wt.)高很多。
由於水環境因子往往會主控PAHs在底泥及一般水體中的表現。因此,在本研究第二階段探討溫度對底泥中phenanthrene和anthracene兩種PAHs於甲醇/水混合溶液之共同溶劑系統中吸附/脫附情形之影響。實驗結果顯示phenanthrene和anthracene的溶解度和溫度與共同溶劑有關。其中,共同溶劑的體積分率愈大,phenanthrene和anthracene溶解度愈大,而Kp值則趨小。實驗控制的溫度為10℃、20℃、30℃及40℃,結果顯示phenanthrene和anthracene的σ值(共同溶劑效力)會隨著溫度增高而趨小,但其增溶效果仍增大,故溫度增高時,溫度效應較共同溶劑效應為強,本研究結果可作為前鎮河復育策略擬定之重要參考依據。

River sediment can act as a reservoir of the pollutants in the river.Hydrophobic organic contaminants(HOCs) such as polynuclear aromatic hydrocarbons (PAHs), will be finally deposited in the sediment.
Hydrophobic organic contaminants are generally characterized as high toxicity, long environmental half-life and high bioaccumulation. Due to their hydrophobicity, HOCs tend to sorb onto particles in the environment.
The objective of this study is to determine the phase distribution of 16 PAHs in the sediments of Chien-Chen River. The temperature and cosolvent effect onto the sorbed PAHs of contaminated sediments was evaluated. The result showed that the main PAH compounds in the sediment were phenantracene and anthracene. The highest PAHs concentrations were found in the upper stream section of Ma-Ju Bridge with phenanthrene of 168.1 mg/Kg (dry wt.) and anthracene of 139.0 mg/Kg.
The effect of temperature on sorption is performed by desorption experiments of sediment at various temperature from 10℃ to 40℃. The cosolvent effect is evaluated by employing various volume fractions of methanol/water (i.e., 0.3, 0.5, 0.7, and 0.9, respectively) into sediment/water systems. The results indicated that the increase of temperayure and volume fraction of cosolvent facilitate the desorption of phenanthrene and anthracene in sediment. In general higher volume fractions of cosolvent resulted in significant increase of solubilities of PAHs and decrease of sorption (partition) coefficient (Kp). The cosolvent is less effective under high temperature condition. The results of this study will assist the strategy design of Chien-Chen River restoration.

中文摘要----------------------------------------------------i
英文摘要---------------------------------------------------ii
壹、緒言----------------------------------------------------1
一、研究動機---------------------------------------------1
二、研究目的---------------------------------------------2
貳、研究背景------------------------------------------------4
一、底泥的形成-------------------------------------------4
二、疏水性有機污染物-------------------------------------4
1、疏水性有機污染物基本性質--------------------------4
2、多環狀芳香族碳氫化合物----------------------------8
三、疏水性有機污染物之吸附行為---------------------------9
1、吸附基本理論--------------------------------------9
2、吸附分配作用--------------------------------------9
3、水環境因子之影響---------------------------------11
四、共同溶劑 -------------------------------------------12
1、共同溶劑基本特性---------------------------------12
2、共同溶劑效應-------------------------------------12
五、氣相層析儀的原理------------------------------------16
參、材料與方法---------------------------------------------17
一、實驗流程--------------------------------------------17
二、儀器設備--------------------------------------------17
1、氣相層析儀 ------------------------------------17
2、恆溫震盪培養箱 --------------------------------20
三、實驗材料--------------------------------------------20
1、試驗材料的取得與保存---------------------------20
2、選定目標污染物---------------------------------24
3、選定化學溶劑-----------------------------------24
4、萃取溶劑---------------------------------------24
四、實驗步驟--------------------------------------------27
1、底泥基本特性的分析-------------------------------27
2、製作PAHs 化合物之檢量線--------------------------27
3、底泥中目標污染物PAHs 含量之測定------------------28
4、不同溫度下PAHs 在底泥與共同溶劑間之分佈係數之測定29
肆、結果與討論---------------------------------------------31
一、實驗底泥之物性與化性--------------------------------31
二、PAHs在底泥與液相(共同溶劑與水)間之分佈係數測定------35
三、phenanthrene 和anthracene 在底泥與液相(共同溶劑與水)
間之分佈係數----------------------------------------42
四、不同溫度下共同溶劑體積分率fc 與Kp 的關係------------47
五、共同溶劑不同體積分率下溫度與Kp 的關係---------------53
六、不同溫度下共同溶劑體積分率fc 與溶解度的關係---------59
伍、結論與建議---------------------------------------------65
陸、參考文獻-----------------------------------------------67
柒、附錄---------------------------------------------------72

李宗霖。1999年。水環境因子對多環芳香族碳氫化合物與溶解性有機
物結合影響之研究。NSC-88-2211-E-110-004。行政院國家科學委員會
專題研究計劃。
行政院環境保護署。1996年。分液漏斗液相-液相萃取法。NIEA
R106.00C方法。
行政院環境保護署。水體水質監測資料庫網站(網址:
http://alphapc.epa.gov.tw/envdatahome.html)。
謝明村。1999年。台灣高雄港區及其鄰近海域沉積物中石油衍生化合物
含量分佈之研究,中山大學海洋環境及工程學系研究所碩士論文。
Alm, A. L. 1990. Nonpoint Sources of Water Pollution,
Environmental Science & Technology, 24(7), 967.
Augustijn, D. C. M., and Rao, P. S. C. 1995. Enhanced
Removal of organic Contaminants by Solvent Flusing, Emerging
Technologies in Hazardous Waste Management V, 18: 224-236.
Brunk, B. K., Jirka, G. H., and Lion, L. W. 1997. Effects of
Salinity Changes and the Formation of Dissolved Organic
Matter Coatings on the Sorption of Phenanthrene: Implications
for Pollutant Trapping in Estuaries, Environmental Science &
Technology, 31, 119-125.
Brusseau, M. L., Wood, A. L., and Rao, P. S. C., 1991.
Influence of Organic Cosolvents on the Sorption Kinetics of
Hydrophobic Organic Chemicals, Environmental Science &
Technology, 25, 903-910.
Chen, C. S., Rao, P.S.C., and Lee, L.S., 1996. Evaluation of
Extraction and Detection Methods for Determining PAH from
Coal Tar Contaminated Soils. Chemosphere, 32, 1123-1132.
Chen, C.S., and Delfino, J.J. 1997. Cosolvent Effects of
Oxygenated Fuels on PAH Soulibility, Journal of
Environmental Engineering, 123, 354-363.
Chiou, C. T., Peter, L. J., and Freed, V. H. 1979. A
physical Concept of Soil-Water Equilibria for Nonionic
Oorganic Compounds, Science, 206, 831-832.
Chiou, C. T., Schmedding, D. W., and Manes, M. 1982.
Partitioning of Organic Compounds in Octanol-Water Systems,
Environmental Science & Technology, 16, 4-10.
Chiou, C. T., Porter, P. E., and Schmedding, D. W. 1983.
Partition Equilibria of Nonionic Organic Compounds between
Soil Organic Matter and Water. Environmental Science &
Technology, 17, 227-231.
Dzombak, D. A., and Luthy, R. G. 1984. Estimating Adsorption
of Polycyclic Aromatic Hydrocarbons on Soil. Soill Science,
137, 292-308.
Errett, D. H., Chin, Y. P., Xu, Y., and Yan, Y. 1996. The
Sorption and Desorption Kinetics of Polycyclic Aromatic
Hydrocarbons in Methanol/Water Mixtures, 13, 177-195.
Hegeman, W. J. M., van der Weijden, C. H., and Loch, J. P. G.
1995.Sorption of Benzo[a]pyrene and Phenanthrene on
Suspended Harbor Sediment as a Function of Suspended Sediment
Concentration and Salinity:A Laboratory Study Using the
Cosolvent Partition Coefficient, Environmental Science &
Technology, 29, 363-371.
Karickhoff, S. W., Brown, D. S., and Scott, T. A. 1979.
Sorption of Hydro- phobic Pollutants on Nnatural Sediments,
Water Research, 13, 241-248.
Kimble, K. D., and Chin, Y. P. 1994. The Sorption of
Polycyclic Aromatic Hydrocarbons by Soils in Low-
Methanol/Water Mixture, Journal of Contaminant Hydrology, 17,
129-143.
Krauss, M., and Wilcke, W. 2001. Predicting Soil-Water
Partitioning of Polycyclic Aromatic Hydrocarbons and
Polychlorinated Biphenyls by Desorption With Methanol-Wwater
Mixtures at Different Temperatures, Environmental Science &
Technology, 35, 2319-2325.
Lane, W. F., and Loehr, R. C., 1992. Estimating the
Equilibrium Aquesous Concentrations of Polynuclear Aromatic
Hydrocarbons in Complex Mixtures, Environmenyal Science &
Technology, 26, 983-990.
Lide, D.R. 1988. Handbook of Chemistry and Physics, CRC.
Literathy, P., Nasser Ali, L., Zarba, M. A., and Ali, M. A.
1987. The Role and Problems of Monitoring Bottom Sediment
for PollutionAssess- ment in the Coastal Marine Envoironment,
Water Science and Technology, 19, 781-792.
McGroddy, S. E., Farrington, J. W., and Gschwend, P. M. 1996.
Comparison of the in Situ and Desorption Sediment-Water
artitioning of Polycyclic Aromatic Hydrocarbons and
Polychlorinated Biphenyls, Environmental Science &
Technology, 30, 172-177.
Menzie, C. A., Potocki, B. B.,and Santodonato, J. 1992
Exposure to Carcinogenic PAHs in the Environment,
Environmental Science & Technology, 26, 1278-1284.
Morris, K. R., Abramowitz, R., Pinal, R., Davis, P., and
Yalkowsky, S.H. 1988. Solubility of Aromatic Pollutants in
Mixed Solvents, Chemosphere, 17, 285-298.
Montgomery, J. M., and Welkom, L. M., 1990. Groundwater
chemicals desk reference. Lewis Publ., Chelsea, Michigan.
Piatt, J. J., Backhus, D. A., Capel P. D., and Eisenreich, S.
J. 1996. Temperature-Desorption Sorption of Naphthalene,
Phenanthrene, and Pyrene to Low Organic Carbon Aquifer
Sediments, Environmental Science & Technology, 30, 751-760.
Pinal, R., Rao, P.S.C., Lee, L.S., and Cline, P.V. 1990.
 Cosolvency of Partially Miscible Organic Solvents on the
Solubility of Hydrophobic Organic Chemicals, Environmental
Science&Technology, 24, 639-646.
Rao, P.S.C., Hornsby, A.G., Kilcrease, D.P. and Nkedi-Kizza, P.
1985. Sorption and Transport of Hydrophobic Organic
Chemicals in Aqueous and Mixed Solvent Systems: Model
Development and Preliminary Evalution, Journal of
Environmnetal Quality, 14, 376-383.
Rao, P.S.C., Lee, L.S., and Pinal, R. 1990. Cosolvency and
Sorption of Hydrophobic Organic Chemicals, Environmental
Science&Technology, 24, 647-654.
Schwarzenbach, R. P., and Westall, J. 1981. Transport of
Nonpolar Organic Compounds from Surface Water to Groundwater
Laboratory Sorption Studies,Environmental Science &
Technology, 15, 1360-1367.
Schlautman, M. A., and Morgan, J. J. 1994. Adsorption of
Aquatic Humic Substances on Collidal-Size Aluminum Oxide
Particles: Influence of Solution Chemistry, Geochimica et
Cosmochimica Acta, 58(20): 4293-4303.
Schwarzenbach, R. P., Gschwend, P. M., and Imboden, D. M. 1993.
Environmental Organic Chemistry, Wiley-Interscience, New
York.
Spurlock, F. C., and Biggar, J. W. 1994. Thermodynamics of
Organic Chemical Partition in Soils. 3. Nonlinear Partition
from Water-Miscible Cosolvent Solutions, Environmental
Science & Technology, 28, 1003-1009.
U.S.EPA. 1986. Soil pH, Method 9045, SW-846, Office of Soild
Waste, Washington, DC.
Verschueren, K. 1983. Handbook of Environmental Data on
Organic Chemicals, Second Edition, Van Nostrand Reinhold.
Voice, T. C., Rice, C. P., and Weber, W. J., Jr. 1983. Effect
of Solids Concentration on the Sorptive Partitioning of
Hydrophobic Pollutants in Aquatic Systems,Environmental
Science & Technology, 17, 513-518.
Wood, A. L., and Bouchard, D. C. 1990. Cosolvent Effects on
Sorption and Mobility of Oorganic Contaminants in Soils,
Chemosphere, 21, 575-587.
Yalkowsky, S. H., Flynn, G. L., and Amidon, G. L. 1972.
Solubilities of Nonelectrolytes in Polar Solvents, Journal of
Pharmaceutical Science, 61(6), 983-984.
Yalkowsky, S. H., and Rubino, J. T. 1985. Solubilization by
Cosolvents I: Organic Solutes in Propylene Glycol-water
Mixture, Journal of Pharmaceutical Science, 74(4), 416-421.
Yalkowsky, S. H., Valvani, S. C., and Amidon, G. L. 1976.
Solubilities of Nonelectrolytes in Polar Solvents IV: Non
Polar Drugs in Mixed Solvents, Journal of Pharmaceutical
Science, 65, 1488-1493.
Zhou, J. L., and Rowland, S. J. 1997. Evaluation of the
Interactions between Hydrophobic Oorganic Pollutants and
Suspended Particles in Estuarine Waters, Water Research, 31,
1708-1718.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 丁永康,「中俄戰略協作夥伴關係:建構國際新秩序分析」,問題與研究,第38卷,第6期,民國88年6月,頁49-61。
2. 王友仁,「美日安保體制與台海危機(1996年)」,華岡社科學報,第14期,民國89年6月,頁7-23。
3. 王定士,「『中』俄戰略協作夥伴關係下的亞太安全:中華民國應有之作為」,遠景季刊,第1卷,第4期,民國89年10月,頁111-154。
4. 吳福寶,「中共跨世紀『睦鄰戰略』與『對臺政策』之研究」,國防雜誌,第16卷,第9期,頁66-80。
5. 林正義,「從危機處理分析布希總統的波斯灣戰爭決策」,歐美研究,第22卷,第3期,民國81年9月,頁24-25。
6. 林吉郎,「第一次台海危機時期美國的對華政策與嚇阻戰略」,復興崗論文集,第15期,民國82年6月,頁119-162。
7. 林碧炤,「論危機處理:美國的經驗再評估」,美歐月刊,第10卷,第5期,民國84年5月,頁4-39。
8. 唐仁俊,「兩岸關係中的美國因素」,中華戰略學刊,88年冬季號,民國88年12月,頁71-105。
9. 唐明輝,「台灣安全策略之策訂--從美國在台海危機之角色探討」,共黨問題研究,第23卷,第6期,民國86年6月,頁26-37。
10. 唐明輝,「民國84年第三次台海危機時中共黨與軍關係之剖析」,陸軍學術月刊,第35卷,第404期,民國88年4月,頁24-34。
11. 唐明輝,「近期中共挑起台海危機之背景及目的探析」,國防雜誌,第13卷,第1期,民國86年7月,頁90-98。
12. 孫光民,「台灣關係法中美國對台海安全之設計」,美歐月刊,第11卷第3期,1996年3月,頁54-65。
13. 高永光,「85年總統大選期間候選人對美國介入台海危機態度之分析」,中山人文社會科學期刊,第4卷,第3期,民國85年6月,頁31-46。
14. 張志豪,「金門八二三砲戰之研究--為紀念金門砲戰四十週年而作」,復興崗學報,第64期,民國87年9月,頁49-68。
15. 張淑雅,「台海危機前美國對外島的政策(1953-1954)」,中央研究院近代史研究所集刊,第23(下)期,民國83年6月,頁293、頁295-330。