跳到主要內容

臺灣博碩士論文加值系統

(44.197.230.180) 您好!臺灣時間:2022/08/20 09:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳志宇
研究生(外文):Chen Chih Yi
論文名稱:光學光柵的形狀對分波多工器的影響
論文名稱(外文):Effects of the Profiles of Optical Gratings on Wavelength Division Multiplexer (WDM)
指導教授:李孟恩
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:52
中文關鍵詞:繞射光柵分波多工器繞射光柵
外文關鍵詞:diffractiongratingwdmfree space diffraction gratingsrcwaRigorous Coupled-Wave Analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:549
  • 評分評分:
  • 下載下載:96
  • 收藏至我的研究室書目清單書目收藏:1
本論文主旨在應用Rigorous Coupled-Wave Analysis(RCWA)理論,建立一套用來快速計算不同形狀之繞射光柵(free space diffraction grating)在不同入射角度下,各階繞射效率值之電腦程式,並利用此程式來分析增進繞射效率的條件。透過波長為1.55μm的平面電磁波以TE模式入射到以矽(Si)為材料的分波解多工器,詳細探討鋸齒狀光柵中不同的「光柵形狀」、「光柵週期」、「光柵深度」以及矩形光柵中不同的「佔空因素」(duty cycle)對光柵之反射光一階繞射效率的影響。在本篇論文中,藉由電腦模擬分析產生最佳繞射效率的條件,此結果可以在設計分波解多工器時提供參考,藉此得到更低損耗元件,並期望本文所發展之程式可以做為元件設計者之輔助工具。
The objectives of this study are to apply the Rigorous Coupled-Wave Analysis(RCWA) in a computer program that can quickly calculate diffraction efficiencies from free space diffraction gratings with different groove shapes at different incident angles, and to analyze the conditions for the improvement of the efficiencies. The reflective first-order diffraction efficiencies were computed for silicon-based wavelength division demultiplxers. With a TE-mode electromagnetic plane wave whose wavelength is 1.55μm incident on free space diffraction gratings, the effects that different groove shapes, grating periods, depths of the saw-toothed gratings, and duty cycles of rectangular gratings result on the first-order diffraction efficiencies were discussed. The conditions for the highest diffraction efficiencies in many cases were analyzed through computer simulation. The results can be utilized in the design of wavelength division demultiplexers to yield better efficiencies.
第一章 導論
1.1高密度分波多工系統簡介………………………………………1
1.2分波解多工器工作原理…………………………………………2
1.2.1 薄膜式濾光片(TFF)簡介………………………………………………...3
1.2.2光纖光柵(FBG)簡介…………………………………………………...4
1.2.3陣列波導光柵(AWG) 簡介……………………………………………….5
1.2.4 繞射光柵(FSDG)簡介…………………………….………………………5
1.3研究動機與目的………………………………………………….6
第二章 繞射式分波解多工器原理與RCWA理論
2.1繞射光柵原理………………………………………………………………..…9
2.2 Rigorous Coupled-Wave Analysis(RCWA)理論簡介…………….…………10
2.2.1 RCWA理論……………………………………………………………11
2.2.2 能量守恆…………………………………………………………………15
2.2.3 RCWA理論應用於實際光柵結構分析時之限制…………………….15
第三章 模擬環境與參數說明
3.1 模擬環境……………………………………………………………………...19
3.1.1 Matlab程式語言簡介………………………………………………….19
3.2 模擬參數設定……………………………………………………………….21
3.2.1 鋸齒狀光柵模擬參數設定………………………………………………24
3.2.2 矩形光柵模擬參數設定…………………………………………………25
第四章 模擬計算結果與分析
4.1鋸齒狀光柵結構Ⅰ………………………………………………30
4.1.1鋸齒狀光柵Ⅰ中R(+1)與光柵週期、深度及入射角度之關係…………31
4.2鋸齒狀光柵結構Ⅱ………………………………………………32
4.2.1鋸齒狀光柵Ⅱ中R(+1)與光柵週期、深度及入射角度之關係…………32
4.3 鋸齒狀光柵結構Ⅲ………………………………………………33
4.3.1鋸齒狀光柵Ⅲ中R(+1)與光柵週期、深度及入射角度之關係…………33
4.4 矩形光柵結構Ⅰ…………………………………………………34
4.5 矩形光柵結構Ⅱ…………………………………………………35
4.6 矩形光柵結構Ⅲ…………………………………………………35
4.7 矩形光柵結構Ⅳ…………………………………………………36
4.8 矩形光柵結構Ⅴ…………………………………………………36
4.9 矩形光柵結構Ⅵ…………………………………………………37
4.10 矩形光柵結構Ⅶ………………………………………………37
4.11 矩形光柵結構Ⅷ………………………………………………..38
4.12 矩形光柵結構Ⅸ………………………………………………38
4.13 矩形光柵結構之分析與比較…………………………………39
4.14 不同光柵形狀對R(+1)率之影響……………………...………40
4.15 最佳maxR(+1)之參數……………………………………41
第五章 結論與未來展望
5.1 結論………………………………………………………………51
5.2 未來工作…………………………………………………………52
1.M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,’’ J. Opt. Soc. Amer., vol. 72, pp. 1385-1392, 1982.
2.“DWDM光通訊的魔法師,’’ 電信建設與技術, pp.10-14, 五月號 2000.
3.H. A. Macleod, Thin-film optical filter , second edition, McGraw-Hill Publishing Company, 1985.
4.Chih-Ping Kuo and Yu-Lung Lo, “Packaging an Athermal Fiber Bragg Grating Without Preloading,’’ Proceeding of Optics and Photonics Taiwan'01, pp.579- 581, December 2001.
5.H. Takahashi, S. Suzuki, K. Kato, and I, Nisha, “Arrayed waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett., vol.26, pp.87-88, 1990.
6.Andrew Sappey and Pei Huang, “Free-space diffraction gratings allow denser channel spacing,” WDM Solutions, pp.39-41, December 2001.
7.P. C. Clemens, R. M¨arz, A. Reichelt, and H. W. Schneider, “Flat-field spectrograph in SiO2/Si,” IEEE Photon. Technol. Lett., vol. 4, pp.886—887, 1992.
8.P. C. Clemens, G. Heise, R. M¨arz, H. Michel, A. Reichelt, and H. W.Schneider, “8-Channel optical demultiplexer realized as SiO2/Si flat-field spectrograph,” IEEE Photon. Technol. Lett., vol. 6, pp. 1109—1111,1994.
9.K. Liu, C.-S. Li, B. Pezeshki, T. Schrans, A. E. Stevens, and F. Tong, “Hybrid optoelectronic digitally tunable receiver,” Proc. SPIE Components for Wavelength Division Multiplexing, E. S. Koteles, Ed.,vol. 2402, pp. 104—114, 1995.
10.M. Fallahi, K. A. McGreer, A. Delˆage, I. M. Templeton, F. Chatenoud, and R. Barber, “Grating demultiplexer integrated with MSM detector array in InGaAs/AlGaAs/GaAs for WDM,” IEEE Photon. Technol. Lett., vol. 5, pp. 794—797, 1993.
11.J. B. D. Soole, A. Scherer, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Monolithic InP/InGAAsP/InP grating spectrometer for the 1.48—1.56μm wavelength range,” Appl. Phys. Lett., vol. 58, pp.1949—1951, 1991.
12.C. Cremer, G. Ebbinghaus, G. Heise, R. M¨uller-Nawrath, M. Schienle, and L. Stoll, “Grating spectrograph in InGaAsP/InP for dense wavelength division multiplexing,” Appl. Phys. Lett., vol. 59, pp. 627—629, 1991.
13.C. Cremer, N. Emeis, M. Schier, G. Heise, G. Ebbinghaus, and L. Stoll, “Grating spectrograph integrated with photodiode array in InGaAsP/InGaAs/InP,” IEEE Photon. Technol. Lett., vol. 4, pp. 108—110, 1992.
14.S. M. Ojha, G. H. B. Thompson, C. G. Cureton, C. B. Rogers, S. J. Clements, M. Asghari, and I. H. White, “Demonstration of low loss integrated InGaAsP/InP demultiplexer device with low polarization sensitivity,” Electron. Lett., vol. 29, pp. 805—807, 1993.
15.J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, C. Caneau, R. Bhat, and M. A. Koza, “High speed monolithic WDM detector for 1.5μm fiber band,” Electron. Lett., vol. 31, pp. 1276—1277, 1995.
16.J. J. He,B. Lamontagne, A. Delˆage, L. Erickson,M. Davies, and E. S. Koteles, “Monolithic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/InP,” J. Lightwave Technol., vol6. 4, pp. 631—638, 1998.
17.R. M¨arz, Integrated Optics: Design and Modeling. Norwood, MA:Artech House, 1994.
18.R. Petit, ed., Electromagnetic Theory of Gratings, Springer-Verlag, Berlin, 1980.
19.M. Neviere, R. Petit, and M. Cadilhac,“About the theory of optical grating coupler-waveguide systems,” Opt. Commun. 8, pp.113-117, 1973.
20.S. T. Peng, H. L. Bertoni, and T, Tamir,“Analysis of periodic thin-film structures with rectangular profiles,” Opt. Commun. 10, pp.91-94, 1974.
21.S. T. Peng and T. Tamir,“Directional blazing of waves guided by asymmetrical dielectric gratings,” Opt. Commun. 11, pp.405-409, 1974.
22.S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theory Tech. MTT-23, pp.123-133, 1975.
23.D. Marcuse, “Exact theory of TE-wave scattering from blazed dielectric gratings,” Bell Syst. Tech. J. 55, pp.1295-1317, 1976.
24.K. Knop, “Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,” J. Opt. Soc. Am. 68, pp.1206-1210, 1978.
25.K. C. Chang and T. Tamir, “Simplified approach to surface-wave scattering by blazed dielectric gratings,” Appl. Opt. 19, pp.282-288, 1980.
26.W. Streifer, D. R. Scifres, and R. D. Burnham, “Analysis of grating-coupled radiation in GaAs:GaAlAs lasers and wave-guides,” IEEE J. Quantum Electron.QE-12, pp.422-428, 1976.
27.T. Tamir and S. T. Peng. “Analysis and design of grating couplers,” Appl. Phys. 14, pp.235-254, 1977.
28.A. R. Neureuther and K. Zaki, “Numerical methods for the analysis of scattering from nonplanar and periodic structures,” Alta Freq. 38, pp.282-285, 1969.
29.K. Zaki, “Numerical methods for the analysis of scattering from nonplanar periodic structures,” Ph.D. thesis (University of California, Berkeley, Calif., 1969).
30.P. M. van den Berg, “Rigorous diffraction theory of optical reflection and transmission gratings,” Ph.D. thesis(Delft University of Technology, Delft, The Netherlands, 1971), rep. no. 1971-16.
31.D. E. Tremain and K. K. Mei, “Application of the unimoment method to scattering from periodic dielectric structures,” J. Opt. Soc. Am. 68, pp.775-783, 1978.
32.K. C. Chang, “Surface-wave scatting by dielectric gratings with arbitrary profiles,” Ph. D. thesis (Polytechnic Institute of New York, New York,1979), 1979.
33.K. C. Chang, V. Shah, and T. Tamir, “Scatteting and guiding of waves by dielectric gratings with arbitrary profiles,” J. Opt. Soc. Am. 70, pp.804-813, 1980.
34.M. G. Moharam, and T. K. Gaylord, “ Rigorous coupled-wave analysis of planar grating diffraction,’’ J. Opt. Soc. Am. 71, pp.811-818, 1981.
35.Wataru Nakagawa, Rong-Chung Tyan, Pang-Chen Sun, Fang Xu, and Yeshaiahu Fainman, “Ultrashort pulse propagation in near-field periodic diffractive structures by use of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A, vol. 18, No. 5, May 2001.
36.Hitoshi Sai, Hiroo Yugami, Yasuhiro Akiyama, Yoshiaki Kanamori, and Kazuhiro Hane, “Spectral control of thermal emission by periodic microstructured surfaces in the near-infrared region,” J. Opt. Soc. Am. A, Vol. 18, No. 7, July 2001.
37.Suntak Park, Seok Ho Song, Cha-Hwan Oh, and Pill-Soo Kim, “Ray-Optical Determination of the Coupling Coefficients of Grating Waveguide by Use of the Rigorous Coupled-Wave Theory,’’ J. Lightwave Technol., VOL. 19, NO. 1, JANUARY 2001.
38.G. Lindfield and J. Penny原著,黃俊銘編譯, 數值方法-使用MATLAB程式語言, 全華科技圖書股份有限公司 民86.
39.張智星, MATLAB程式設計與應用, 清蔚科技股份有限公司, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊